L11: Link and Network layer

6.033 Spring 2007

http://web.mit.edu/6.033

Slides from many folks

Last lecture: layering of protocols

- Each layer adds/strips off its own header
- Each layer may split up higher-level data
- Each layer multiplexes multiple higher layers
- Each layer is (mostly) transparent to higher layers

Link Layer

Problem:

Deliver data from one end of the link to the other

Need to address:

- Bitsà Analog à Bits
- Framing
- Errors
- Medium Access Control (The Ethernet Paper)

Manchester encoding

- Each bit is a transition
- Allows the receiver to sync to the sender's clock

Framing

- Receiver needs to detect the beginning and the end of a frame
- Use special bit-pattern to separate frames
 - E.g., pattern could be 1111111 (7 ones)
- <u>Bit stuffing</u> is used to ensure that a special pattern does not occur in the data
 - If pattern is 1111111 à Whenever the sender sees a sequence of 6 ones in the data, it inserts a zero (reverse this operation at receiver)

Error Handling

- Detection:
 - Use error detection codes, which add some redundancy to allow detecting errors
- · When errors are detected
 - Correction:
 - Some codes allow for correction
 - Retransmition:
 - Can have the link layer retransmit the frame (rare)
 - Discard:
 - Most link layers just discard the frame and rely on higher layers to retransmit

Network Layer:

finds a path to the destination and forwards packets along that path

- Difference between routing and forwarding
 - Routing is finding the path
 - Forwarding is the action of sending the packet to the next-hop toward its destination

Forwarding

- Each router has a forwarding table
- · Forwarding tables are created by a routing protocol

Forwarding table at R

Dst. Addr	Link
Α	1
В	2
С	1
E	3

The IP Header vers HLen Total Length TOS FRAG Offset TTL Protocol checksum SRC IP Address DST IP Address (OPTIONS) (PAD)

Forwarding an IP Packet

- · Lookup packet's DST in forwarding table
 - If known, find the corresponding outgoing link
 If unknown, drop packet
- Decrement TTL and drop packet if TTL is zero; update header Checksum
- · Forward packet to outgoing port
- Transmit packet onto link

Path Vector • Step 2: Update Route Info • Each node use the advertisements to update its paths D received: $\underline{From\ A:}$ From C: From E: To | Path To | Path To | Path null C null Ε null D updates its paths: DST | Link | Path DST Link | Path End layer Note: At the end of first round, each node has learned all

Questions About Path Vector

• How do we avoid permanent loops?

one-hop paths

- What happens when a node hears multiple paths to the same destination?
- What happens if the graph changes?

Questions About Path Vector

- How do we ensure no loops?
 - When a node updates its paths, it never accepts a path that has itself
- What happens when a node hears multiple paths to the same destination?
 - It picks the better path (e.g., the shorter number of hops)
- · What happens if the graph changes?
 - Algorithm deals well with new links
 - To deal with links that go down, each router should discard any path that a neighbor stops advertising

- Internet: collection of domains/networks
- Inside a domain: Route over a graph of routers
- Between domains: Route over a graph of domains
- · Address consists of "Domain Id", "Node Id"

Hierarchical Routing

Advantage

- Scalable
 - Smaller tables
 - Smaller messages
- Delegation
 - Each domain can run its own routing protocol

Disadvantage

- Mobility is difficult
 - Address depends on geographic location
- Sup-optimal paths
 - E.g., in the figure, the shortest path between the two machines should traverse the yellow domain.

Routing: many open issues

- Flat addresses and scalable?
- Routing in multihop WiFi networks?
- Routing in peer-to-peer networks?
- Misconfigurations between domains?