L12: end to end layer

6.033 Spring 2007
Slides from many folks

TTTTTTTTTT

End-to-end layer

Server

presentation Layer

End-to-end layer

Data Header == Data Header

D | H
\./3

Link Layer

Network layer provides
best effort service

* Packets may be:
* Lossed

* Delayed (jitter)

* Duplicated

* Reordered

* Problem: Inconvenient service for applications

* Solution: Design protocols for E2ZE modules
* Many protocols/modules possible, depending on requirements

This lecture: some E2E properties

At most once

At least once
* Exactly once?

Sliding window
Case study: TCP
Tomorrow: Network File System (NFS)

At Least Once

client server client server

an RTT P

Timeout and v

Retransmission .t

* Sender persistently sends until it receives an ack

* Challenges:
* Duplicate ACKs
* What value for timer

Duplicate ACK problem

Client Server

-
-
-
-
-
-
-
-
-
-
-
=
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

* Problem: Request 2 is not delivered
* violates at-least once delivery

Solution: nonce

Client Server
N1

timeout

N2

Label request and ack with unique identifier that is never re-used

Engineering a nonce

Client Server
» Use sequence 1
nhumbers timeout AN
* Challenges: ! PG
* Wrap around? 2
* Failures?
" %

Timer value

* Fixed is bad. RTT changes depending on
congestion

* Pick a value that’s too big, wait too long to retransmit a
packet

* Pick a value too small, generates a duplicate
(retransmitted packet).

* Adapt the estimate of RTT - adaptive timeout

RTT Measurements

(collected by Caida)

rtt
rtt median-filtered
[1 packetloss

300 T 100)

lancelet.caida.org to anala

280 1
260 1

240 1

[
-

2201

200 1
180 - ' ‘ '

rEt (mzec)

=

packet lozz (percent)

1604

140

w—-—
16:32:00 16:33:30 16:35:00 16:36:30 16:38:00 16339230
Tim= CFTITH

Adaptive Timeout:
Exponential weighted moving
averages
 Samples S, S,, S, ..

* Algorithm
« EstimatedRTT =T,

 EstimatedRTT = S + (1-) EstimatedRTT
e where0< <1

« What values should one pick for and T,?
* Adaptive timeout is also hard

At Most Once Challenges

client server

1

Process request 1

Process request 1

* Server shouldn’t process req 1
* Server should send result preferably

Idea: remember sequence number

client server
1
Process request 1
1 | Ok
ACK 1

Resend ACK 1

* Server remembers also last few responses

Problem: failures

client server

ey

Ok
1 acK 1

-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-
-
-
-
-
=
-
-
-
-

2 | < Ok
O \(\’\ ACK 1
p 1

-
_-
"

* Performed request 1 twice!
* How to maintain the last nonce per sender (tombstone)?

* Write to non-volatile storage?
* Move the problem? (e.g., different port number)
* Make probability of mistake small?

* How about exactly once? (Need transactions)

How fast should the sender sends??

Host A HostB ¢ Waiting for acks is too slow
* Throughput is one

Q2
packet/RTT

* Say packetis 500 bytes

| \.@ RTT 100ms

> - Throughput = 40Kb/s,
Awful!

* Overlap pkt transmission

="
-

Send a window of packets

Host A Host B .
e Assume the receiver

% is the bottleneck

o * Maybe because the
o3P receiver is a slow
machine
* Receiver needs to tell
the sender when and
how much it can
|dle send

* The window
advances once all
previous packets are
acked = too slow

»
\ \
\

oS-/

Sliding Window
Host A Host B

e Senders advances
the window
whenever it

receives an ack =

sliding window

' cde« But what is the
- right value for the

window?

The Right Window Size

* Assume server is bottleneck
* Goal: make idle time on server zero
* Assume: server rate is B bytes/s
* Window size =B x RTT
* Danger: sequence number wrap around

* What if network is bottleneck?
* Many senders?
* Sharing?
* Next lecture

“Negative” ACK

Minimize reliance on timer

Add sequence numbers to
packets

Send a Nack when the
receiver finds a hole in the
sequence numbers

Difficulties
* Reordering

e Cannot eliminate acks,
because we need to ack the
last packet

E2E layer in Internet

HTTP, RTP, Sun RPC, .

TCP or UDP

IP

Ethernet, WiFlI, ...

Application

Transport

Network

— Link

The 4-layer Internet model

\

End-to-End
Layer

UDP

Transmission Control Protocol
(TCP)

 Connection-oriented Host A Host B
* Delivers bytes at-

most-once X, ? \SK v, x+1
* Bidirectional y, Y

* ACKSs are piggybacked
X+1, y+1

TCP header

Closing a TCP connection

Host A -
ny flnx\’ y, X
aC\wa,\T,,,,,,,,,,,,,
‘“w
timed wait M
timeout closed

closed

BT AE ey [ool Tee J-Se-Raidalkaie

_—

CONREZT

HETL

I —

ekl (R 1EU] EARSGUR DT

Dans EECHA ST

TR A

g 0l Qe It -hminkilinie |

i

Fowain :

CLOSMNG ;

+ :

M WAIT 2 . TRED WaT ;
PR 5

T :

(B R R R R R IR R R R R AR R RO R R AR U IR ARl Il) RRURIIRT IR I III.

o e o ovre)

il | o Tk o R |

= isusl #wat

— = Clisntl recivver path
=i Sprdar merver jath

 [coswar |

