

L12: end to end layer

6.033 Spring 2007
http://web.mit.edu/6.033
Slides from many folks

End-to-end layer

stubstub

Network Layer

Link Layer

presentation Layer

End-to-end layer

RPC RPC

HD

HD

HD

HD HD

HD

HeaderData HeaderData

client server

• Packets may be:
• Lossed
• Delayed (jitter)
• Duplicated
• Reordered
• …

• Problem: Inconvenient service for applications

• Solution: Design protocols for E2E modules
• Many protocols/modules possible, depending on requirements

Network layer provides
best effort service

This lecture: some E2E properties

• At most once
• At least once

• Exactly once?

• Sliding window
• Case study: TCP
• Tomorrow: Network File System (NFS)

At Least Once

• Sender persistently sends until it receives an ack
• Challenges:

• Duplicate ACKs
• What value for timer

Timeout and
Retransmission

 an RTT

client server
Data

ACK

client server
Data

Data

X

Duplicate ACK problem

• Problem: Request 2 is not delivered
• violates at-least once delivery

 timeout

Client Server
Req 1

Req 1
ACK

Req 2

Req 3
ACK

Solution: nonce

• Label request and ack with unique identifier that is never re-used

 timeout

Client Server
Req N1

Req N1

ACK N1

Req N2

Req N2
ACK N1

N1

N2

Engineering a nonce

• Use sequence
numbers

• Challenges:
• Wrap around?
• Failures?

Client Server
Req 1

Req 1

ACK 1

Req 2

Req 2
ACK 1

1

2

 timeout

• Fixed is bad. RTT changes depending on
congestion
• Pick a value that’ s too big, wait too long to retransmit a

packet
• Pick a value too small, generates a duplicate

(retransmitted packet).

• Adapt the estimate of RTT  adaptive timeout

Timer value

RTT Measurements
(collected by Caida)

Adaptive Timeout:
Exponential weighted moving

averages
• Samples S1, S2, S3, ..

• Algorithm
• EstimatedRTT = T0

• EstimatedRTT = S + (1-) EstimatedRTT
• where 0 ≤ ≤ 1

• What values should one pick for and T0?
• Adaptive timeout is also hard

At Most Once Challenges

client server
Req 1

req 1

Ok
ACK 1

ACK 1

• Server shouldn’ t process req 1
• Server should send result preferably

1

2

Process request 1

Process request 1

Idea: remember sequence number

client server
Req 1

req 1

Ok
ACK 1

• Server remembers also last few responses

1

1

2

Ok
ACK 1

Ok
ACK 1 Resend ACK 1

Process request 1

Problem: failures
client server

Req 1

req 1

Ok
ACK 1

• Performed request 1 twice!
• How to maintain the last nonce per sender (tombstone)?

• Write to non-volatile storage?
• Move the problem? (e.g., different port number)
• Make probability of mistake small?

• How about exactly once? (Need transactions)

1

1

2

Ok
ACK 1

Ok
ACK 1

0

0

1

Ok
ACK 1

How fast should the sender sends?

• Waiting for acks is too slow
• Throughput is one

packet/RTT
• Say packet is 500 bytes
• RTT 100ms
 Throughput = 40Kb/s,

Awful!

• Overlap pkt transmission

Host A Host B
Data 1

Data 2

ACK

Send a window of packets

• Assume the receiver
is the bottleneck
• Maybe because the

receiver is a slow
machine

• Receiver needs to tell
the sender when and
how much it can
send

• The window
advances once all
previous packets are
acked  too slow

Host A Host B

Send?

OK, 3 pkts

Idle

2­
4

5­
7

Sliding Window

• Senders advances
the window
whenever it
receives an ack 
sliding window

• But what is the
right value for the
window?

Host A Host B

Send?

OK, 3 pkts

Idle

2­
4

3­
5

The Right Window Size

• Assume server is bottleneck
• Goal: make idle time on server zero
• Assume: server rate is B bytes/s
• Window size = B x RTT
• Danger: sequence number wrap around

• What if network is bottleneck?
• Many senders?
• Sharing?
• Next lecture

“ Negative” ACK

• Minimize reliance on timer
• Add sequence numbers to

packets
• Send a Nack when the

receiver finds a hole in the
sequence numbers

• Difficulties
• Reordering
• Cannot eliminate acks,

because we need to ack the
last packet

Host A Host B

D1
D2
D3

D1

D3

X

D2

D4

Nack-2

E2E layer in Internet

Network

Link

Transport

The 4-layer Internet model

ApplicationHTTP, RTP, Sun RPC, …

IP

TCP or UDP

Ethernet, WiFI, ...

End-to-End
Layer

UDP

Transmission Control Protocol
(TCP)

Host A Host B

Syn x

Data x+1, ack y+1

ack x+1, syn y

y, x+1x,?

x+1, y+1

• Connection-oriented
• Delivers bytes at-

most-once
• Bidirectional

• ACKs are piggybacked

TCP header

Closing a TCP connection

Host A Host B

fin x

ack x+1

y, xx,y

fin y

ack y+1

closed

timed wait

timeout closed

