

Network layer provides best effort service

- · Packets may be:
 - Lossed
 - Delayed (jitter)
 - Duplicated
 - Reordered
 - ...
- Problem: Inconvenient service for applications
- Solution: Design protocols for E2E modules
 - Many protocols/modules possible, depending on requirements

This lecture: some E2E properties

- At most once
- At least once
 - Exactly once?
- Sliding window
- Case study: TCP
- Tomorrow: Network File System (NFS)

Timer value

- Fixed is bad. RTT changes depending on congestion
 - Pick a value that's too big, wait too long to retransmit a packet
 - Pick a value too small, generates a duplicate (retransmitted packet).
- $\bullet\,$ Adapt the estimate of RTT à $\,$ adaptive timeout

Adaptive Timeout: Exponential weighted moving averages

- Samples S₁, S₂, S₃, ...
- Algorithm
 - EstimatedRTT = T_0
 - EstimatedRTT = α S + (1- α) EstimatedRTT
 - where $0 \le \alpha \le 1$
- What values should one pick for α and T_0 ?
 - · Adaptive timeout is also hard

At Most Once Challenges client process request 1 2 Process request 1 Process request 1 • Server shouldn't process req 1 • Server should send result preferably

• Server remembers also last few responses

Host A Host B • Waiting for acks is too slow • Throughput is one packet/RTT • Say packet is 500 bytes • RTT 100ms • à Throughput = 40Kb/s, Awful! • Overlap pkt transmission

The Right Window Size Assume server is bottleneck Goal: make idle time on server zero Assume: server rate is B bytes/s Window size = B x RTT Danger: sequence number wrap around What if network is bottleneck? Many senders? Sharing? Next lecture

