

L13: Sharing in network systems

6.033 Spring 2007
http://web.mit.edu/6.033
Slides from many folks

Where is sharing happening?

stubstub

Network Layer

Link Layer

presentation Layer

End-to-end layer

RPC RPC

HD

HD

HD

HD HD

HD

HeaderData HeaderData

client server

This Lecture

• Problems:
• Sharing server
• Sharing network

• Solution:
• Set the window size carefully
• Sharing server: flow control
• Sharing the network: congestin control

Sliding Window

• The window advances/slides upon the arrival of an
ack

• The sender sends only packets in the window
• Receiver usually sends cumulative acks

• i.e., receiver acks the next expected in-order packet

Window Size

Outstanding
Un-ack’ d pkts

Packets OK
to send

Packets not OK
to send yet

Packets ACK’ d

Src

Rcvr

window = 1-5

1 2 3 4 5

p1

x

Src

Rcvr

window = 2-6

1 2 3 4 5

p1

a2

x

6

Src

window = 2-6

1 2 3 4 5

p1

a2

x

6

a2

p3
Rcvr

Src

window = 2-6

1 2 3 4 5

p1

a2

x

6

a2

p3

a2

p4

a2

p6

a2

p5

Timeout

2

a7

p2
Rcvr

Src

window = 7-11

1 2 3 4 5

p1

a2

x

6

a2

p3

a2

p4

a2

p6

a2

p5

Timeout

2

a7

p2

7 8 9 10 11

Rcvr

In this example, the receiver sent cumulative acks, but the same behavior
happens if the receiver acks the received sequence number

What is the right window size?

• The window limits how fast the sender
sends

• Two mechanisms control the window:
• Flow control
• Congestion control

Flow Control

• The receiver may be slow in processing
the packets receiver is a bottleneck

• To prevent the sender form
overwhelming the receiver, the receiver
tells the sender the maximum number of
packets it can buffer fwnd

• Sender sets W ≤ fwnd

How to set fwnd?

App App

B1 B2

TCP

 Multiple applications run on the same machine but use different ports

P1D P2D

P2D H

P1D H

network

• Fwnd = B x RTT
• Size of queue

substitute for B
• Adapts to

• RTT changes
• B changes

• “ self-pacing”

Sharing the network

How do you manage the resources in a huge
system like the Internet, where users with different
interests share the same resources?

Difficult because of:
• Size

• Millions of users, links, routers

• Heterogeneity
• bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s
• latency: 50us (LAN), 133ms (wired), 1s (satellite), 260s (Mars)

Congestion
S1

S2

R1 D

10Mb/s

2Mb/s

100Mb/s

S1

S2

 Sources share links, and
buffer space

 Why a problem?
 Sources are unaware of current state of resource
 Sources are unaware of each other

 Manifestations:
 Lost packets (buffer overflow at routers)
 Long delays (queuing in router buffers)
 Long delays may lead to retransmissions, which lead to more

packets….

Danger: Congestion Collapse
Increase in input traffic leads to decrease in useful work

Input traffic

T
hr

ou
gh

pu
t

cliff

Congestion
Collapse

knee

Latency

 Causes of Congestion Collapse
 Retransmissions introduce duplicate packets
 Duplicate packets consume resources wasting link capacity

Example: old TCP
implementations

Fwnd 2

Fwnd 1

 Long haul network (i.e., large RTT)

 Router drops some of TCP 2’ s fwnd packets

 Each discard packet will result in timeout
 At timeout TCP 2 resends complete window

 Cumulative ACK, timeouts fire off at “ same” time
 Blizzard of retransmissions can result in congestion collapse

 Insufficiently adaptive timeout algorithm made things worse

What can be done in general?

• Avoid congestion:
• Increase network resources

• But demands will increase too!
• Admission Control & Scheduling

• Used in telephone networks
• Hard in the Internet because can’ t model traffic well

• Perhaps combined with Pricing
• senders pay more in times of congestion

• Congestion control:
• Ask the sources to slow down; But how?

• How do the sources learn of congestion?
• What is the correct window?
• How to adapt the window as the level of congestion

changes?

How do senders learn of
congestion?

Potential options:
• Router sends a Source Quench to the sender
• Router flags the packets indicating congestion
• Router drops packets when congestion occurs

• Sender learns about the drop because it notices the
lack of ack

• Sender adjusts window

• Define a congestion control window cwnd
• Sender’ s window is set to W = min (fwnd,

cwnd)
• Simple heuristic to find cwnd:

• Sender increases its cwnd slowly until it sees a
drop

• Upon a drop, sender decreases its cwnd quickly to
react to congestion

• Sender increases again slowly
• No changes to protocol necessary!

Case study: current TCP

TCP Increase/decrease algorithm

• AIMD:
• Additive Increase Multiplicative Decrease

• Every RTT:
 No drop: cwnd = cwnd + 1
 drop: cwnd = cwnd /2

Additive Increase

D A

Src

Rcvr

cwnd = 1
cwnd += 1
cwnd = 2

D D A A

cwnd = 3

D D A AD A

cwnd = 4

TCP AIMD

Time

Cwnd

Grab capacity
again

 Halve Cwnd

Timeout because
of a packet loss

desired
cwnd

Need the queue to absorb these saw-tooth oscillations

TCP “Sl ow Start”

D A D D A A D D

A A

D

A

Src

Rcvr

D

A

1 2 4 8

A A A A

 How to set the initial cwnd?

 At the beginning of a connection, increase exponentially

 Every RTT, double cwnd

Slow Start + AIMD

Time

Cwnd

Slow start

Additive
increase

Multiplicative
decrease

 Timeout

Fairness?

• No!
• Applications don’ t have to use TCP
• Use multiple TCP connections

Summary

• Controlling complexity in network systems
• Layering
• Interesting division of labors based on E2E principle
• Case study: Internet

• Interesting problems and techniques
• Packets
• Protocols
• …

• Client-server implementation

• Next: Application-level reliability and security

