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Where is sharing happening?
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This Lecture

• Problems:
• Sharing server
• Sharing network

• Solution: 
• Set the window size carefully
• Sharing server: flow control
• Sharing the network: congestin control



  

Sliding Window

• The window advances/slides upon the arrival of an 
ack

• The sender sends only packets in the window
• Receiver usually sends cumulative acks

• i.e., receiver acks the next expected in-order packet 
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In this example, the receiver sent cumulative acks, but the same behavior 
happens if the receiver acks the received sequence number



  

What is the right window size?

• The window limits how fast the sender 
sends

• Two mechanisms control the window:
• Flow control 
• Congestion control



  

Flow Control

• The receiver may be slow in processing 
the packets  receiver is a bottleneck

• To prevent the sender form 
overwhelming the receiver, the receiver 
tells the sender the maximum number of 
packets it can buffer fwnd

• Sender sets W ≤ fwnd



  

How to set fwnd?

App App
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 Multiple applications run on the same machine but use different ports
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• Fwnd = B x RTT
• Size of queue 

substitute for B
• Adapts to

• RTT changes
• B changes

• “ self-pacing”



  

Sharing the network

How do you manage the resources in a huge 
system like the Internet, where users with different 
interests share the same resources?

Difficult because of:
• Size

• Millions of users, links, routers

• Heterogeneity
• bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s 
• latency: 50us (LAN), 133ms (wired), 1s (satellite), 260s (Mars)



  

Congestion
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 Sources share links,           and 
buffer space

 Why a problem?
 Sources are unaware of current state of resource
 Sources are unaware of each other

 Manifestations:
 Lost packets (buffer overflow at routers)
 Long delays (queuing in router buffers)
 Long delays may lead to retransmissions, which lead to more 

packets….



  

Danger: Congestion Collapse
Increase in input traffic leads to decrease in useful work

Input traffic

T
hr

ou
gh

pu
t

cliff

Congestion 
Collapse

knee

Latency

 Causes of Congestion Collapse
 Retransmissions introduce duplicate packets
 Duplicate packets consume resources wasting link capacity



  

Example: old TCP 
implementations

Fwnd 2

Fwnd 1

 Long haul network (i.e., large RTT)

 Router drops some of  TCP 2’ s fwnd packets

 Each discard packet will result in timeout
 At timeout TCP 2 resends complete window

 Cumulative ACK, timeouts fire off at “ same”  time
 Blizzard of retransmissions can result in congestion collapse

 Insufficiently adaptive timeout algorithm made things worse



  

What can be done in general?

• Avoid congestion:
• Increase network resources

• But demands will increase too!
• Admission Control & Scheduling

• Used in telephone networks
• Hard in the Internet because can’ t model traffic well

• Perhaps combined with Pricing
• senders pay more in times of congestion

• Congestion control: 
• Ask the sources to slow down; But how?

• How do the sources learn of congestion?
• What is the correct window?
• How to adapt the window as the level of congestion 

changes?



  

How do senders learn of 
congestion?

Potential options:
• Router sends a Source Quench to the sender 
• Router flags the packets indicating congestion
• Router drops packets when congestion occurs

• Sender learns about the drop because it notices the 
lack of ack

• Sender adjusts window



  

• Define a congestion control window cwnd
• Sender’ s window is set to W = min (fwnd, 

cwnd) 
• Simple heuristic to find cwnd:

• Sender increases its cwnd slowly until it sees a 
drop

• Upon a drop, sender decreases its cwnd quickly to 
react to congestion

• Sender increases again slowly 
• No changes to protocol necessary!

Case study: current TCP



  

TCP Increase/decrease algorithm 

• AIMD: 
• Additive Increase Multiplicative Decrease 

• Every RTT:
   No drop:   cwnd = cwnd + 1
   drop:     cwnd = cwnd /2
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TCP AIMD
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TCP “Sl ow Start”
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 How to set the initial cwnd?

 At the beginning of a connection, increase exponentially

 Every RTT, double cwnd 



  

Slow Start + AIMD
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Fairness?

• No!
• Applications don’ t have to use TCP
• Use multiple TCP connections



  

Summary

• Controlling complexity in network systems
• Layering
• Interesting division of labors based on E2E principle
• Case study: Internet

• Interesting problems and techniques
• Packets
• Protocols
• …

• Client-server implementation

• Next: Application-level reliability and security


