L13: Sharing in network systems 6.033 Spring 2007 http://web.mit.edu/6.033 Slides from many folks

This Lecture

- Problems:
 - Sharing server
 - Sharing network
- Solution:
 - Set the window size carefully
 - Sharing server: flow control
 - Sharing the network: congestin control

What is the right window size?

- The window limits how fast the sender sends
- Two mechanisms control the window:
 - Flow control
 - Congestion control

Flow Control

- The receiver may be slow in processing the packets à receiver is a bottleneck
- To prevent the sender form overwhelming the receiver, the receiver tells the sender the maximum number of packets it can buffer fwnd
- Sender sets W ≤ fwnd

Sharing the network

How do you manage the resources in a huge system like the Internet, where users with different interests share the same resources?

Difficult because of:

- Size
 - · Millions of users, links, routers
- · Heterogeneity
 - bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s
 - latency: 50us (LAN), 133ms (wired), 1s (satellite), 260s

Danger: Congestion Collapse Increase in input traffic leads to decrease in useful work knee Throughput Congestion Collapse Input traffic v Causes of Congestion Collapse v Retransmissions introduce duplicate packets v Duplicate packets consume resources wasting link capacity

What can be done in general?

- · Avoid congestion:
 - Increase network resources

 - Admission Control & Scheduling

 - Used in telephone networks
 Hard in the Internet because can't model traffic well
 - · Perhaps combined with Pricing
 - senders pay more in times of congestion
- Congestion control:
 - · Ask the sources to slow down: But how?
 - How do the sources learn of congestion?
 - · What is the correct window?
 - How to adapt the window as the level of congestion changes?

How do senders learn of congestion?

Potential options:

- Router sends a Source Quench to the sender
- Router flags the packets indicating congestion
- Router drops packets when congestion occurs
 - Sender learns about the drop because it notices the lack of ack
 - · Sender adjusts window

Case study: current TCP

- Define a congestion control window cwnd
- Sender's window is set to W = min (fwnd, cwnd)
- Simple heuristic to find cwnd:
 - Sender increases its cwnd slowly until it sees a drop
 - Upon a drop, sender decreases its cwnd quickly to react to congestion
 - Sender increases again slowly
- No changes to protocol necessary!

TCP Increase/decrease algorithm

- AIMD:
 - Additive Increase Multiplicative Decrease
- Every RTT:

No drop: cwnd = cwnd + 1 drop: cwnd = cwnd /2

Fairness?

- No!
 - Applications don't have to use TCPUse multiple TCP connections

Summary

- Controlling complexity in network systems Layering

 - Interesting division of labors based on E2E principle
 - Case study: Internet
- Interesting problems and techniques
 - Packets
 - Protocols
- Client-server implementation
- Next: Application-level reliability and security