# Computer Systems are Different! 

### 6.033 Spring 2007

## Static discipline



Figure 1-3: How gain and non-linearity of a digital component restore levels. The range of accepted inputs is much wider than the range of generated outputs.

- Be tolerant of inputs and strict on outputs


## Moore's law


"Cramming More Components Onto Integrated Circuits", Electronics, April 1965

## Moore's Law: \# transistors/die doubles every ~18 months



## Lithography: the driver behind transistor count



- Number of
components scales $\mathrm{O}\left(n^{2}\right)$ with feature size
- Switching time scales $\mathrm{O}(n)$ with features size
- Number of components scale $\mathrm{O}\left(n^{2}\right)$ with die area


## RAM density



## CPU performance



Trends in CPU performance growth, from microprocessors to supercomputers

## Disk: Price per GByte drops at $\sim 30-35 \%$ per year



## ENIAC



- $1^{\text {st }}$ built in 1946
- 80 feet
- 20 10-digit registers
- 18,000 vacuum tubes
- 124,500 watts


## UNIVAC (Universal Automatic Computer)



- Introduced in 1951
- 46 delivered in all, until 1958
- Predicted '52 election results based on early results (1\%)
- 1,905 ops/sec, at 2.25 Mhz clock
- 1,000 words of 12 characters
- No monitor, only typewriter


## IBM Systems/360

- 1960s
- Model 40
- 1.6 Mhz
- 32-64 Kilobyte
- \$225,000


## DEC PDP

- PDP-8, 1964
- 330,000 adds/s
- \$16-20K
- UNIX introduced on PDP-10


## Cray 1: supercomputer

QuickTime ${ }^{T M}$ and a
TIFF (Uncompressed) decompress are needed to see this picture.

- 1976
- Most expensive, fastest, best price/performance ratio
- \$5-8 Million
- 166 Million adds/s
- 32 Mbyte


## Apple II

- 1977
- 6502 microprocessor
- 4 to 48 Kilobyte

QuickTime ${ }^{T M}$ and a
TIFF (Uncompressed) decompressor are needed to see this picture.

## IBM's wrist watch

- 2001
- Linux and X11
- 19Mhz ARM
- 8 Megabyte flash
- 8 Megabyte DRAM


## Software system complexity



## Computing is everywhere!



## Internet hosts (names) with time: ~40\% per year

Internet Domain Suryey Host Count


## People-to-computer ratio with



Slide from David Culler, UC Berkeley

## Latency improves slowly



## Incommensurate doubling



Hypothetical Effects of Dissimilar Doubling Rates Over a Decade

## Fabrication is expensive



Semiconductor fabrication line capital cost per thousand wafers per week

## Heat is a problem



## Itanium Temperature Plot


[ Source: Intel]

## Principles

Adopt sweeping
simplifications
Avoid excessive generality

- Be explicit
- Decouple modules with indirection
Design for iteration
- End-to-end argument

Incommensurate scaling rule
Law of diminishing returns

- Open design principle
- Principle of least surprise
Robustness principle Unyielding foundations rule

