Computer Systems are Different!

6.033 Spring 2007

Static discipline

• Be tolerant of inputs and strict on outputs

Moore's law

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

"Cramming More Components Onto Integrated Circuits", *Electronics*, April 1965

Moore's Law: # transistors/die doubles every ~18 months

transistors

Lithography: the driver behind transistor count

Number of components scales
O(n²) with feature size
Switching time scales O(n) with features size
Number of components scale O(n²) with die area

RAM density

CPU performance

Trends in CPU performance growth, from microprocessors to supercomputers

ENIAC

- 1st built in 1946
- 80 feet
- 20 10-digit registers
- 18,000 vacuum tubes
- 124,500 watts

UNIVAC (Universal Automatic Computer)

- Introduced in 1951
- 46 delivered in all, until 1958
- Predicted '52 election results based on early results (1%)
- 1,905 ops/sec, at
 2.25 Mhz clock
- 1,000 words of 12 characters
- No monitor, only typewriter

IBM Systems/360

- 1960s
- Model 40
 - 1.6 Mhz
 - 32-64 Kilobyte
 - \$225,000

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

DEC PDP

- PDP-8, 1964
- 330,000 adds/s
- \$16-20K
- UNIX introduced on PDP-10

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Cray 1: supercomputer

• 1976

- Most expensive, fastest, best price/performance ratio
- \$5-8 Million
- 166 Million adds/s
- 32 Mbyte

QuickTime[™] and a TIFF (Uncompressed) decompress are needed to see this picture.

Apple II

- 1977
- 6502 microprocessor
- 4 to 48 Kilobyte

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

IBM's wrist watch

- 2001
- Linux and X11
- 19Mhz ARM
- 8 Megabyte flash
- 8 Megabyte DRAM

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Software system complexity

Computing is everywhere! Projected to be 1B in 2005!

Millions

PCs TVs Cars Cell phones

Internet hosts (names) with time: ~40% per year

Internet Domain Survey Host Count

People-to-computer ratio with time

year

Slide from David Culler, UC Berkeley

Latency improves slowly

Incommensurate doubling

Hypothetical Effects of Dissimilar Doubling Rates Over a Decade

Fabrication is expensive

Semiconductor fabrication line capital cost per thousand wafers per week

Heat is a problem

Itanium Temperature Plot

[Source: Intel]

Principles

Adopt sweeping simplifications Avoid excessive generality

- Be explicit
- Decouple modules with indirection
 - Design for iteration
- End-to-end argument

Incommensurate scaling rule Law of diminishing returns

- Open design principle
- Principle of least surprise
 Robustness principle
 Unyielding foundations rule