Computer security: authentication of principals and cryptographic protocols

6.033 Spring 2007

key distribution

1. M, Sign(M, KA

2. Alice?

3. M = {“A’s KA

• 3 is a certificate for Alice’s public key
• Charles is called a certificate authority
• The interaction is an example of a cryptographic protocol

Shorter notation

1. \([M]^{KA

2. Alice?

3. \([M]^{KA

• Subscript for signing
• Superscript for encrypting

Denning-Sacco

1. Authenticate Alice to Bob and Bob to Alice
2. Set up a shared-secret key

Impersonation Attack

Thinks Bob is Alice

1. \([A, K_{A,B}, T]_{K_{CA,B}}
2. \([K_{A,B}, T]_{K_{CA,B}}
3. \([K_{A,B}, T]_{K_{CA,B}}

Deadline: May 20

HKN Underground Guide

Link posted on 6.033 home page

Deadline: May 20
Denning-Sacco (fixed)

Example: Web (SSL simplified)

- U: https://www.amazon.com
- B → W: \{random\textsubscript{c}, session-id, ciphersuites\}
- B ← W: \{random\textsubscript{s}, session-id, {amazon.com, K\textsubscript{pub-amazon}}\textsubscript{Kversign}\}
- B: verify({amazon.com, K\textsubscript{pub-amazon}}\textsubscript{Kversign}\textsubscript{Kpub-verisign})?
- B → W: {pre-master-secret}\textsubscript{K\textsubscript{pub-amazon}}

Be explicit!

X509 certificate

- struct X509_certificate {
 unsigned version;
 unsigned serial;
 signature_cipher_identifier;
 issuer_signature;
 issuer_name;
 subject_name;
 subject_public_key_cipher_identifier;
 subject_public_key;
 validity_period;
};

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.