L9: Intro Network Systems

6.033 Spring 2007
http://web.mit.edu/6.033
Slides from many folks

What have you seen so far?

<table>
<thead>
<tr>
<th>Systems</th>
<th>Complexity</th>
<th>Modularity</th>
<th>Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dtechnology/dt</td>
<td>Therac-25</td>
</tr>
<tr>
<td>Naming systems</td>
<td>Gluing systems</td>
<td></td>
<td>File system</td>
</tr>
<tr>
<td>Client/service</td>
<td>Enforced</td>
<td></td>
<td>X windows</td>
</tr>
<tr>
<td>design</td>
<td>modularity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating systems</td>
<td>Client/service</td>
<td></td>
<td>Eraser and Unix</td>
</tr>
<tr>
<td></td>
<td>with in a computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>Coping with bottlenecks</td>
<td></td>
<td>MapReduce</td>
</tr>
</tbody>
</table>

Client/service using network

- Sharing irrespective of geography
- Strong modularity through geographic separation

Network is a system too!

- Network consists of many networks, many links, many switches
- Internet is a case study of successful network system

Today’s topic: challenges

- Economical:
 - Universality
 - Topology, Sharing, Utilization
- Organizational
 - Routing, Addressing, Packets, Delay
 - Best-effort contract
- Physical
 - Errors, speed of light, wide-range of parameters
Circuit Switching
- It’s the method used by the telephone network
- A call has three phases:
 - Establish circuit from end-to-end (“dialing”),
 - Communicate,
 - Close circuit (“tear down”).
- If circuit not available: “busy signal”

Isochronous Multiplexing/Demultiplexing
One way for sharing a link is TDM:
- A time interval is divided into n frames
- Each frame carries the data of a particular conversation
 - E.g., frame 0 belongs to the red conversation

Circuit Switching
- Assume link capacity is C bits/sec
- Each communication requires R bits/sec
 - #frames = C/R
- Maximum number of concurrent communications is C/R
- What happens if we have more than C/R communications?
- What happens if the communication sends less/more than R bits/sec?
 Design is unsuitable for bursty communications

Packet Switching
- Used in the Internet
- Data is sent in Packets
 (header contains control info, e.g., source and destination addresses)
- Per-packet routing
- At each node the entire packet is received, buffered, and then forwarded)
- No capacity is allocated

Asynchronous Multiplexing/Demultiplexing
- Multiplex using a queue
 - Switch need memory/buffer
- Demultiplex using information in packet header
 - Header has destination
 - Switch has a forwarding table that contains information about which link to use to reach a destination

Aggregate Internet Traffic Smooths
5-min average traffic rate at an MIT-CSAIL router
- Max In: 12.2 Mb/s
- Avg. In: 2.5 Mb/s
- Max Out: 12.8 Mb/s
- Avg. Out: 3.4 Mb/s
Best Effort

No Guarantees:
- Variable Delay (jitter)
- Variable rate
- Packet loss
- Duplicates
- Reordering

Plan for studying network systems

<table>
<thead>
<tr>
<th>Sharing and challenges</th>
<th>7.A</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layering</td>
<td>7.B+C</td>
<td>End-to-end</td>
</tr>
<tr>
<td>Routing</td>
<td>7.D</td>
<td>Internet routing</td>
</tr>
<tr>
<td>End-to-end reliability</td>
<td>7.E</td>
<td>Network file system</td>
</tr>
<tr>
<td>Congestion control</td>
<td>7.F</td>
<td>NATs</td>
</tr>
</tbody>
</table>