Network Security

Dina Katabi dk@mit.edu nms.csail.mit.edu/~dina

Network Attacks Are Common

- Attack Types:
 - * Spam
 - * Denial of service attacks
 - * Worms & Viruses
 - * and others
- Attack targets
 - * Hosts including attacks on Web servers, TCP, etc.
 - * Links
 - * Routers
 - * DNS
 - * And others
- Who are the attackers?
 - * Script kiddies
 - * Professionals who do it for money

How confidential is traffic in this lecture room?

- sudo tcpdump -s 0 -Ai en1
 - * Complete trace of all packets on wireless interface
 - * You shouldn't do this
- * Example:

13:57:53.794429 IP 18.188.69.36.mdns > 224.0.0.251.mdns: 0 [4a] [4q] SRV? Ben's music._daap._tcp.local. TXT? Ben's music._daap._tcp.local. A? ben-powerbook-g4-15.local. AAAA? ben-powerbook-g4-15.local. (367)

Example Data inside packet

GET /Slashdot/slashdot HTTP/1.1

Host: rss.slashdot.org

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.14) Gecko/20080404 Firefox/2.0.0.14

Accept:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,im age/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

X-Moz: livebookmarks

Cookie: ___utma=9273847.1144108930.1176828748.1210531979.1210543936.424; ___utmz=9273847.1205865901.368.13.utmcsr=google|utmccn=(organic)| utmcmd=organic| utmctr=generating%2B3d%2Bmodels%2Bfrom%2Bstill%2Bimages;

6.033 Related

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Hal Abelson

Portrait by Philip Greenspun

Hal Abelson is Class of 1922 Professor of Computer Science and Engineering in the <u>Department of Electrical Engineering and</u> <u>Computer Science</u> at <u>MIT</u>.

Hal Abelson MIT Computer Science and Artificial Intelligence Laboratory Room 386, The Stata Center 32 Vassar Street Cambridge, MA 02139 Phone: (617) 253-5856 Fax: (617) 258-8682 Email: hal at MIT dot edu

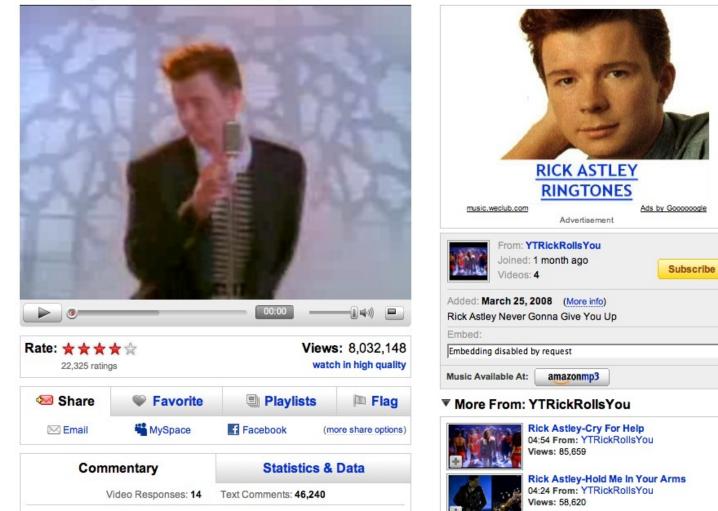
- Stodgy biography for public consumption.
- What I'm doing these days
- <u>Selected publications</u>
- Obligatory baby picture

Not so related jimmyjimmyjames (0) Account V QuickList (0) Help Log Out Site:

Videos

Home

Videos


advanced search

settings

- Search

Upload

Rick Astley-Never Gonna Give You Up

iChat is Plaintext

None this year, but last year...

strings log.dump | grep ichatballoon | cut -d\> -f 4-

A: it's just better not to reveal personal information B: why?

- A: I dunno, identity theft and stuff
- B: oh, okay
- A: maybe I just won't worry about it

GMail is not encrypted by default

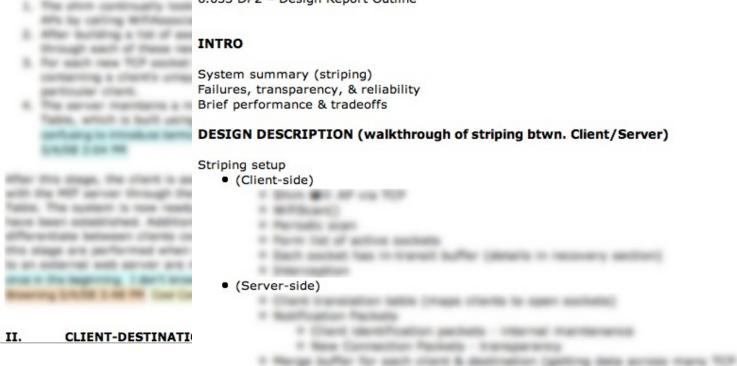
- Completely in the clear:
 - * Contacts lists

May 4

* GCalendar events

GZipped text but can ungzip

- * Inbox entries
- * Mail messages


Semmie Kim Bored on a Sunday night?? Take a break! Dear Student: We would appreciate your input and help -- please take this survey! Our apologies ... May 4 **David Templeton** Technique YEARBOOKS available in the student center this week Technique 2008, the Yearbook of MIT, will be available in the student center for the next two ... May 4 Ali Wyne Spring 2008 Issue of MIT International Review Available! Hi, folks. The Spring 2008 issue of The MIT International Review (MITIR) is available at http ... May 4 Vanessa Perez Chocolate Foutain in 5E Hurry May 4 Sun Kim Senate Meeting Monday May 5 with Dean Schmill Hev all Sun here. I am wondering if anyone is going to the Senate meeting tomorrow night ... Г May 4 David Karger dp2 early draft I know dp2 is due thursday. But please, if possible, bring an early draft of your submission on ...

...nor is Google Docs

STRIPING IMPLEMENTATION

I. SYSTEM PREPARATION

To perform TCP connection striping, the system first establishes multiple TCP connections to stripe over. To accomplish this, 6.033 DP2 – Design Report Outline

(too late to spy on DP2!)

res when a chart ands multiple TO* atteants to the sartion do no dear with manging them corruptly or they it

Solution?

- Don't use access sensitive data over an unencrypted connection
 - * Good thing we don't use Google Docs to manage grades... or do we?
- Change http:// to https://
 - * Works for Gmail, Google Docs
 - * Not in general

Use SSL for MIT/CSAIL mail

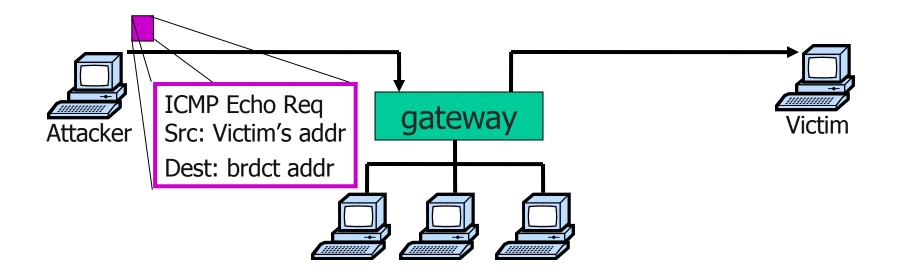
At least one staff member forgot to turn on SSL for outgoing mail

Message-Id: <0F7F7068-C5E0-4C9D-B59E-DC8FC4958CAC@csail.mit.edu> From: XXX To: XXX, XXX Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes Content-Transfer-Encoding: 7bit Mime-Version: 1.0 (Apple Message framework v919.2) Subject: hal abelson lecture now Date: Mon, 12 May 2008 14:15:36 -0400 X-Mailer: Apple Mail (2.919.2) Hal Abelson is giving a guest lecture in 6.033 right now on ethics and law in computer systems. It's pretty good so far if you're looking to kill time. 32-123 (hang on, i think it might be getting into actual work-related stuff now...

might still be interesting tho)

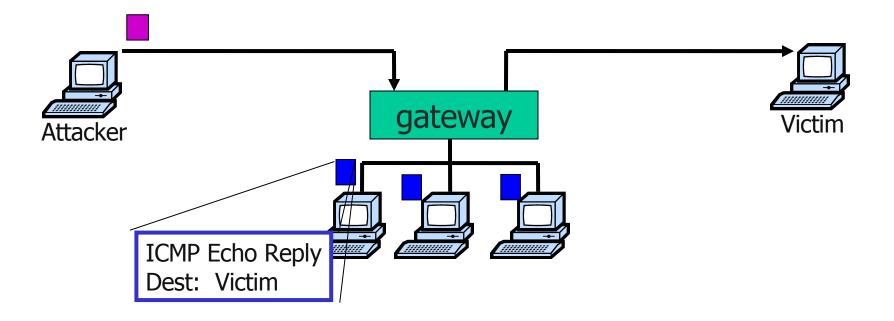
Mounting An Attack

Attacker's Goals

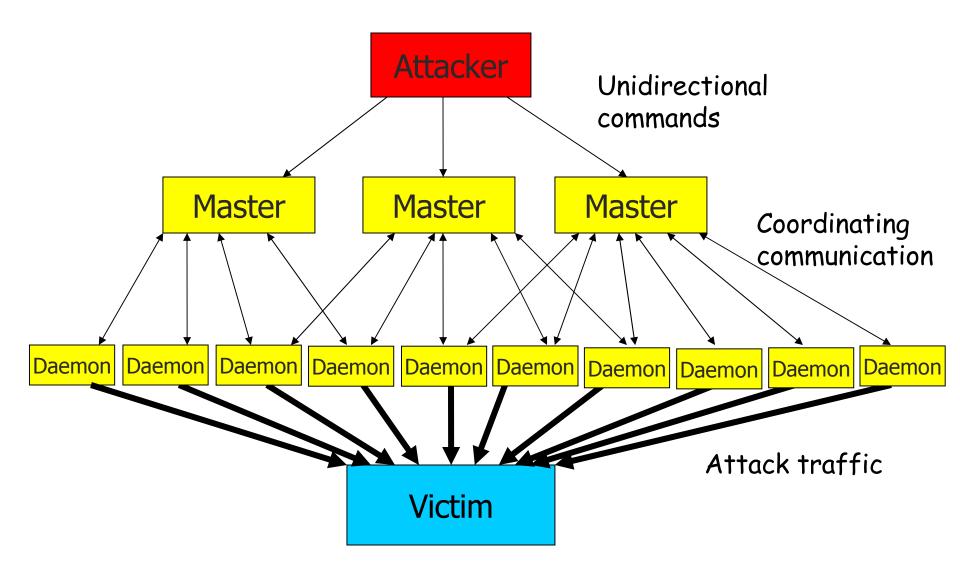


* Maximize damage

These goals are essential to understand what makes an attack effective and how to counter attacks


Attacker Wants to Hide

- Spoof the source (IP address, email account, ...)
- Indirection
 - * Reflector attacks: E.g., Smurf Attack



Attacker Wants to Hide

- Spoof the source (IP address, email account, ...)
- Indirection
 - * Reflector attacks: E.g., Smurf Attack

Increase Damage \rightarrow Go Fully Distributed \rightarrow Use a Botnet

Some Distributed Denial of Service (DDoS) Tools

- Many public tools for flooding a victim with unwanted traffic
- Trin00 (Trinoo)
 - * Client ported to Windows
- TFN Tribe Flood Network
 TFN2K Updated for 2000
- Stacheldraht
 - * German for "Barbed Wire"

Trinoo Transcript

Connection to port (default 27665/tcp)

attacker\$ telnet 10.0.0.1 27665
Trying 10.0.0.1
Connected to 10.0.0.1
Escape character is '^]'.
Kwijibo
Connection closed by foreign host. . . .

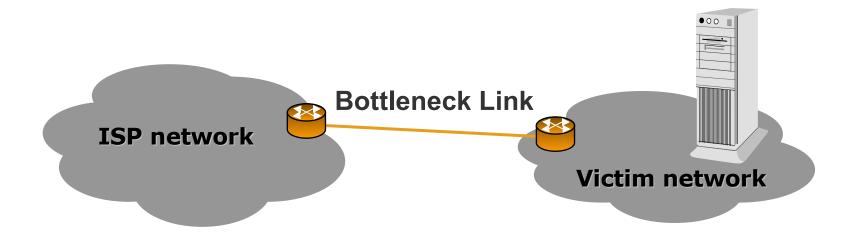
attacker\$ telnet 10.0.0.1 27665 Trying 10.0.0.1 Connected to 10.0.0.1 Escape character is '^]'. Betaalmostdone trinoo v1.07d2+f3+c..[rpm8d/cb4Sx/]

trinoo>

Trin00 Commands

- * dos <IP> command to initiate a DoS against the targeted <IP> address
- * mdos <IP1:IP2:IP3> sends command to attack three IP addresses, sequentially
- die shut down the master
- * mdie <password> if correct password specified, packet
 is sent out to all daemon nodes to shutdown
- * mping ping sent to all nodes in the deamon list
- * killdead delete deamon nodes from list that didn't reply to ping
- bcast gives a list of all active daemons
- * mstop Attempts to stop an active DoS attack. Never implemented by the author(s), but the command is there

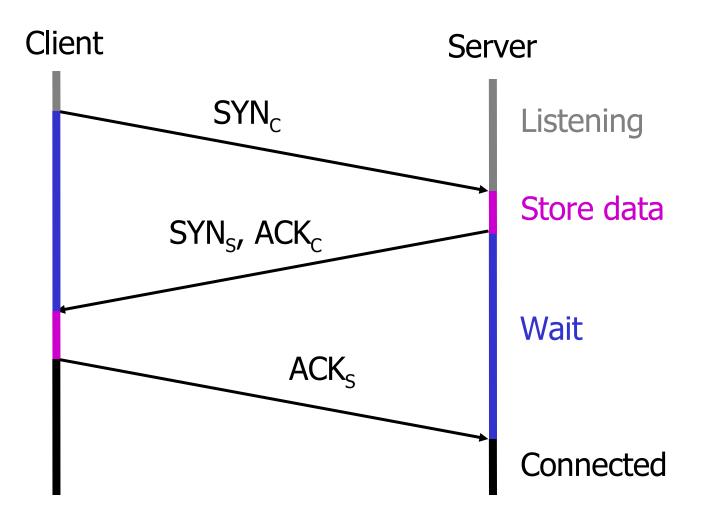
Bots Stories

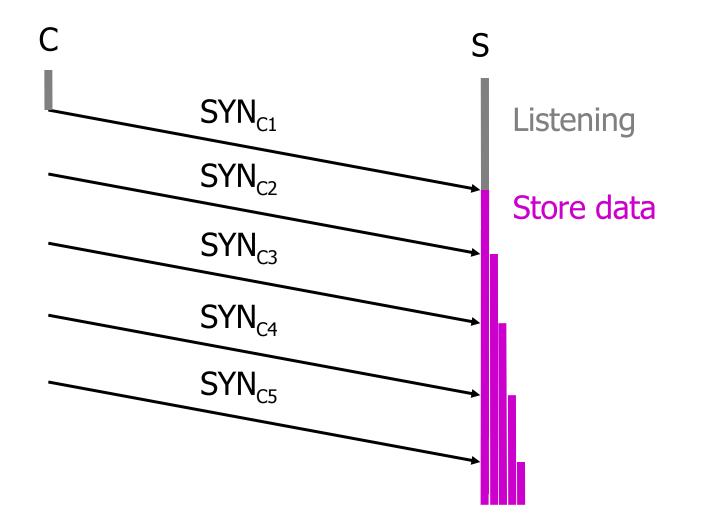

- Bots are common
- In 2006, every day 30,000 machines become zombies
- Bots of 20,000+ machines are reported
- Bots are rented by the hour
- Bots are used for a variety of attacks, DDoS, Spam, as web servers which serve illegal content,...

Attacks

Attacks on Bandwidth

- Brute force attack
- * Attacker sends traffic to consume link bandwidth


Defending against bandwidth attacks is hard


- Should drop packets before the bottleneck, i.e., at ISP
- But
 - * ISPs are not willing to deploy complex filters for each client
 - * ISPs have no strong incentive; they charge clients for traffic
- Big companies defend themselves by using very high bandwidth access links

Attacks on TCP

TCP SYN Flood

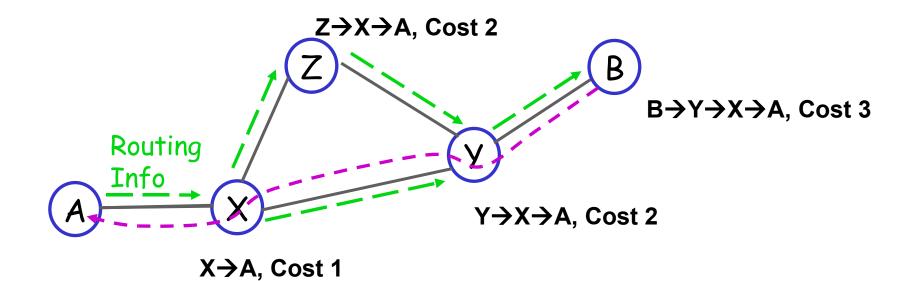
TCP SYN Flood

TCP SYN Flood

- * Usually targets connection memory \rightarrow Too many half-open connections
- Potential victim is any TCP-based server such as a Web server, FTP server, or mail server
- To check for SYN flood attacks
 - * Run netstat -s |grep "listenqueue overflows" and check whether many connections are in "SYN_RECEIVED"
- How can the server deal with it?
 - * Server times out half-open connection
 - * SYN cookies and SYN caches prevent spoofed IP attacks

SYN Cookie

- Ensures source IP is not spoofed
- Server delay resource reservation until it checks that the client can receive a packet at the claimed source address


No state is stored. Initialize TCP seq number to a random cookie

Check seq to ensure client received cookie

Attacks on Routers

Attacks on Routers:

Routing Protocols

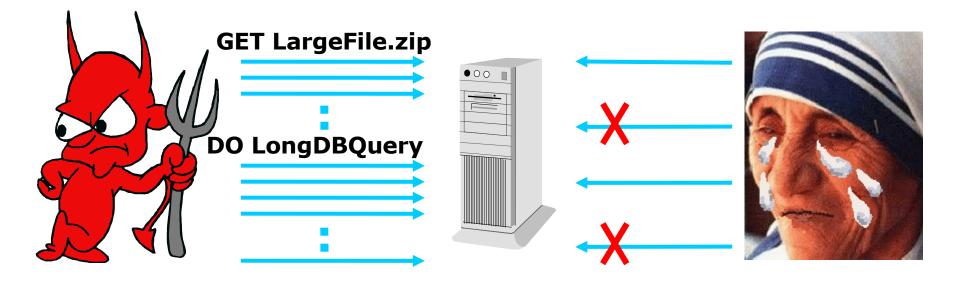
Attacks on Routers:

Attacks on Routing Table $Z \rightarrow A, Cost 1$ $Z \rightarrow A, Cost 1$ $B \rightarrow Y \rightarrow Z \rightarrow A, Cost 3$ Routing Info $X \rightarrow Y \rightarrow Z \rightarrow A, Cost 2$

- Attacker needs to get access to a router
- Attacks
 - * Prefix hijacking by announcing a more desirable route
 - Z can lie about its route to A
 - * Overload routers CPU by too many routing churns
 - Overload the routing table with too many routes
 - Causes router to run out of memory or CPU power for processing routes
 - E.g., AS7007

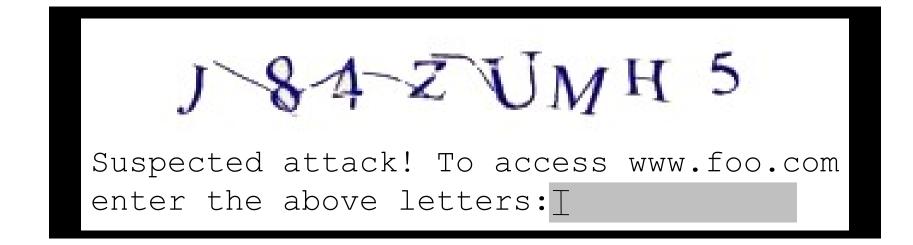
<u>Attacks on Routers:</u>

Countering Routing Table Attacks


- Authenticate peer routers
- Secure BGP [Kent et al]
 - Every ISP sign their advertisements creating a chain of accountability (e.g., Y sends { X: {A}_x}_y
 - * Too many signatures \rightarrow too slow
 - With no authentication needs a few usec; MD5 ~100 usec; RSA ~1 sec

DoS Attacks on Web Servers

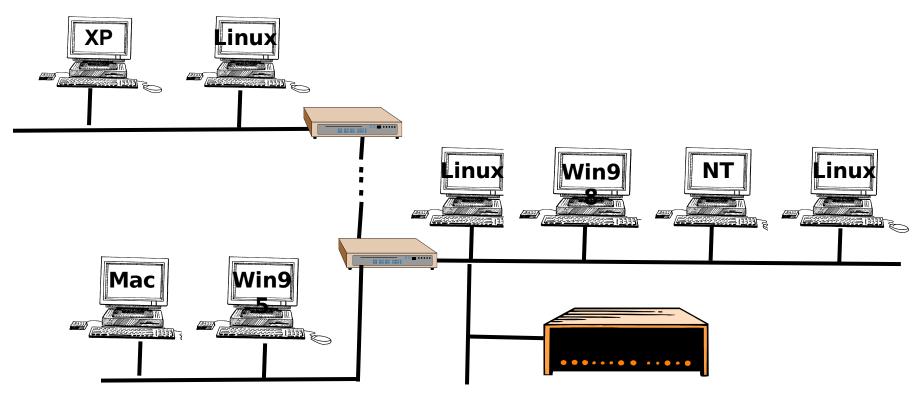
DoS Attacks on Web Servers


- Most known attacks
 - * E.g., Yahoo, Amazon, ...
 - * Moore et al report over 12,000 attacks in 3-week, intentity as high as 600,000 pkts/s
- * Recently taking the form of Cyber Mafia
 - Pay us \$50,000 to protect you from attacks similar to the one on last Tuesday
- Becoming more distributed
 - * Less spoofing of IP addresses

<u>Dos Attacks on Servers:</u> Attacks that Mimic Legitimate Traffic

- Attacker compromises many machines causing them to flood victim with HTTP requests (e.g., MyDoom worm)
- Attacked resources
 - * DB and Disk bandwidth
 - * Socket buffers, processes, ...
 - Dynamic content, password checking, etc.
- * Hard to detect; attack traffic is indistinguishable from legitimate traffic

CAPTCH-Based Solution


- Need to ensure:
 - * Cheap ways to send test and check answer
 - * Some people can't or don't want to answer graphical tests but are legitimate users (e.g., Blind users)

Detection

Detection Issues

- Detecting What?
 - * Detecting the offending packets
 - * Some attack characteristics (e.g., how many zombies)
 - * The occurrence of an attack
- Offline vs. realtime
 - * Realtime detection may help in throttling the attack while forensics might help in suing the attacker
- Detection cost
 - * Can attacker mount an attack on the detection mechanism? How would that affect the protected system?

Network Intrusion Detection

- NIDS box monitors traffic entering and leaving your network
- In contrast to firewalls, NIDS are passive

Approaches to Intrusion Detection

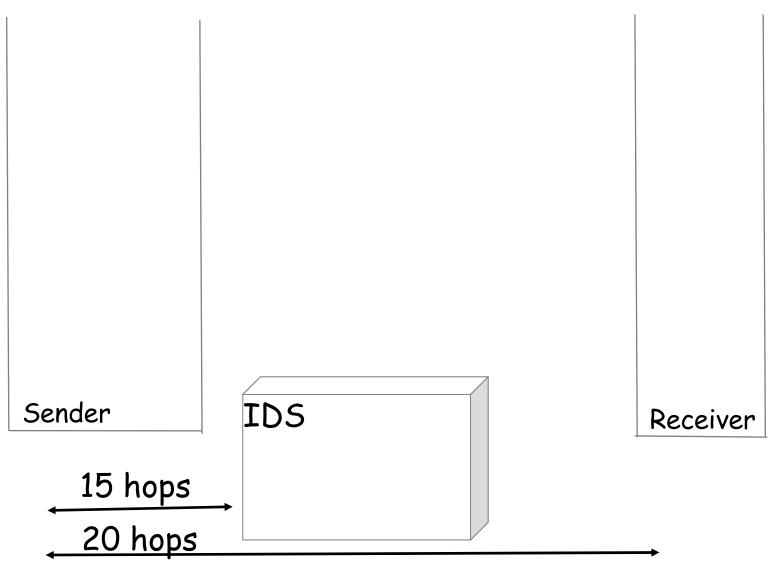
1. <u>Signature Based:</u> Keeps a DB of known attack signatures and matches traffic against DB (e.g., Bro, Snort)

* Pros

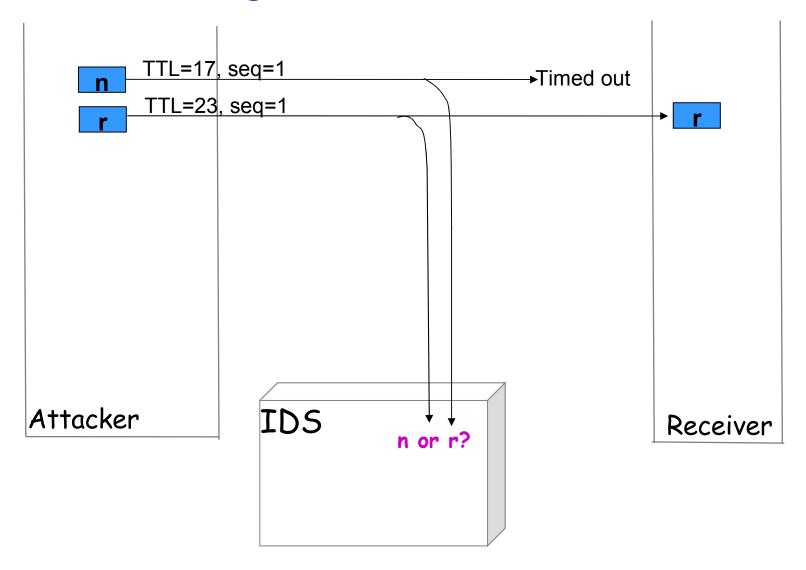
- Easy to understand the outcome
- More accurate in detecting known attacks
- * Cons
 - Can't discover new attacks
- 2. <u>Anomaly Based</u>: Matches traffic against a model of normal traffic and flags abnormalities (e.g., EMERALD)

* Pros

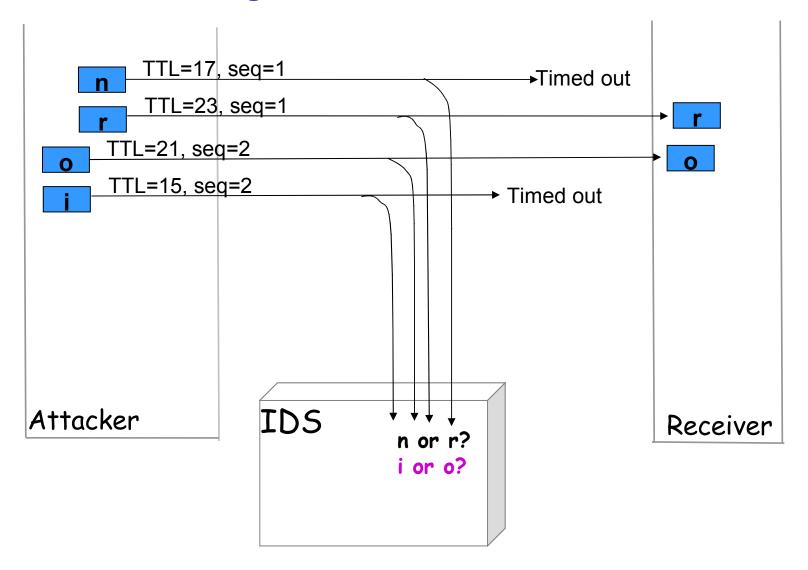
Can deal with new attacks

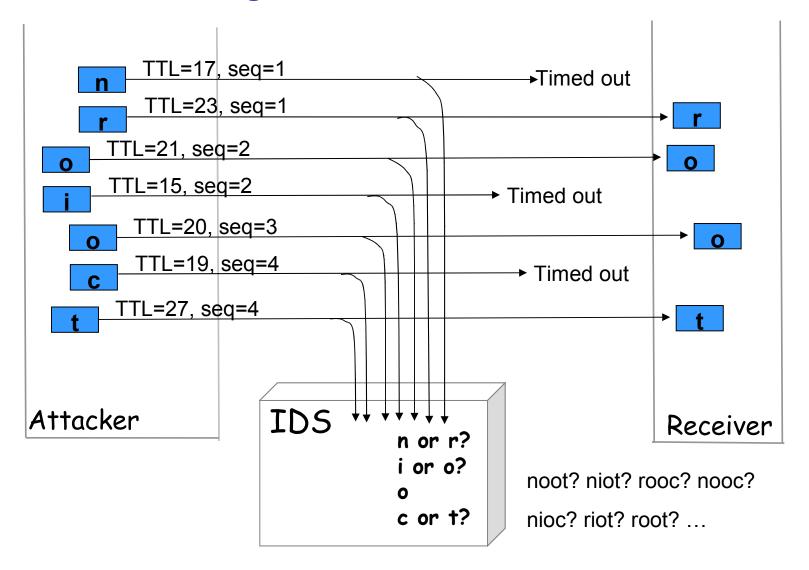

* Cons

- Modeling normal. it is hard to describe what is normal
- Limits new applications
- Less accurate detection of known attacks
- 3. Hybrid: Matches against DB of known attacks. If no match, it checks for anomaly


Evasion Problem in NIDS

- Consider scanning traffic for a particular string ("USER root")
- Easiest: scan for the text in each packet
 No good: text might be split across multiple packets
- Okay, remember text from previous packet
 No good: out-of-order delivery
- Okay, fully reassemble byte stream
 - * Costs <u>state</u>
 - * and still evadable




Evading Detection Via Ambiguous TCP Retransmission

Evading Detection Via Ambiguous TCP Retransmission

Evading Detection Via Ambiguous TCP Retransmission

Bypassing NIDS

Insertion

DoS it

* Hack it

Cause many false alarms until admin stops paying attention