
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2006

Quiz I
There are 12 questionsand 12 pagesin this quiz booklet. Answer each question according to the
instructions given. You have50 minutesto answer the questions.

All questions are multiple-choice questions. Next to each choice, circle the wordTrue or False, as
appropriate. A correct choice will earn positive points, a wrong choice may earn negative points,
and not picking a choice will score 0. The exact number of positive and negative points for each
choice in a question depends on the question and choice. The maximum score for each question
is given near each question; the minimum for each question is 0. Some questions are harder
than others and some questions earn more points than others—you may want to skim all quesions
before starting.

If you find a question ambiguous, be sure to write down any assumptions you make.Be neat and
legible. If we can’t understand your answer, we can’t give you credit!

Write your name in the space below AND at the bottom of each page of this booklet.

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.
NO PHONES, NO COMPUTERS, NO LAPTOPS, NO PDAS, ETC.

CIRCLE your recitation section number:

10:00 1. Madden/Hu

11:00 2. Madden/Seater 3. Rinard/Ports

12:00 4 Rinard/Seater 5. Walfish/Ports

1:00 6. Walfish/Winstein 7. Katabi/Hu

2:00 8. Katabi/Winstein

Do not write in the boxes below

1-4 (xx/30) 5-10 (xx/46) 11-12 (xx/24) Total (xx/100)

Name:

6.033 Spring 2006, Quiz 1 Page 2 of 12

I Reading Questions

1. [6 points]: Which of the following statements is true for UNIX as described in reading #5
(Ritchie and Thompson. “The UNIX time-sharing system”, Bell System Technical Journal, 57, 6,
part 2, 1978)?

(Circle True or False for each choice.)

A. True / False The i-number of a file is a disk address.

B. True / False Directory entries contain the names of files and their corresponding i-numbers.

C. True / False Links may be made to directories.

D. True / False A pipe between two processes cannot be established after both have started.

E. True / False A parent process shares open files at the time ofFORK with its children.

F. True / False A parent process knows the “processid” of its child process whenFORK completes
but not vice versa.

2. [8 points]: Which of the following statements is true of the X Window System as described in
Reading #6 (Scheifler and Gettys. “The X window System”, ACM Trans. on Graphics, Vol 5, 2, April
1986)?

(Circle True or False for each choice.)

A. True / False The X server is an example of a trusted intermediary.

B. True / False The X server notifies the client when regions of the client’s window become
visible, but not when regions of the client’s window become obscured.

C. True / False The X server runs in user mode.

D. True / False The X client sends RPCs to the X server to check if a mouse click has occurred.

3. [8 points]: Which of the following statements about the Lockset algorithm as used in the Race-
Track paper (Reading #7 “RaceTrack: Efficient Detection of Data Race Conditions via Adaptive
Tracking” by Yu, Rodeheffer, and Chen, Proc. of the 20th ACM Symposium on Operating Systems
Principles, 2005) is true?

(Circle True or False for each choice.)

A. True / False It can be used to detect deadlocks in multi-threaded programs.

B. True / False It can report false race conditions that are not actually present in the code.

C. True / False It can fail to detect race conditions that are actually present in the code.

D. True / False It cannot detect race conditions involving three or more threads.

Name:

6.033 Spring 2006, Quiz 1 Page 3 of 12

4. [8 points]: Louis writes a multithreaded program, which produces an incorrect answer some of
the time, but always completes. He suspects a race condition. Which of the following are strategies
that can reduce or eliminate race conditions in Louis’s program?

(Circle True or False for each choice.)

A. True / False Separate a multi-threaded program into multiple single-threaded programs (each
with its own address space) and share data between them via an inter-program communication
primitive like pipes.

B. True / False Apply the one-writer rule.

C. True / False Ensure that for each shared variablev, it is protected by some locklv.

D. True / False Ensure that all locks are acquired in the same order.

Name:

6.033 Spring 2006, Quiz 1 Page 4 of 12

II Ben’s OS (BOS)

Ben is having a blast with design project 1. To get a better feeling for the workloads that his superfast file
system might experience, he sketches out a server:

The server supports the following requests:

• UPLOAD: upload a file to the server. Attempting to write an existing file results in an error.

• DOWNLOAD: download a file from the server. Attempting to read a file that doesn’t exist results in
an error.

• UNLINK: remove a file. Attempting to unlink a file that doesn’t exist results in an error.

• START: start a new program. This request is not required by DP1 but Ben added it to make it possible
to start programs on the server. This request may fail if there are not enough resources to start the
program.

To support the server, Ben’s operating system (BOS) supports the following supervisor calls (also sometimes
called system calls) in addition to the file system callsOPEN, WRITE, READ, CLOSE, andUNLINK :

• RECEIVE MESSAGE(port): A program callingRECEIVE MESSAGE will block until a message des-
tined forport arrives on this machine.

• SEND MESSAGE(message): The procedureSEND MESSAGE sends a message to portdestport on
machinedestination(see message structure in figure 1).

• RUN(name): Applications can start a new program usingRUN. RUN creates a new user-level address
space, loads the program specified in its argument into the address space, creates a thread to run the
program, and returns to the caller. The new program may call any of the supervisor calls.

Ben’s names this first BOS implementation BOSv1.
Name:

6.033 Spring 2006, Quiz 1 Page 5 of 12

The server runs like any other application (i.e., it has been created usingRUN) and is implemented as shown
in figure 1. (We suggest you skim the code and continue reading the text of the quiz. The implementation
of the server is straightforward and it doesn’t include any quiz traps. For specific questions you may want
to go back to the code to firm up your understanding of what the specific question is asking.)

5. [5 points]: Looking at the underlined strings in figure 1, which of the following are examples of
names?

(Circle True or False for each choice.)

A. True / False “source”

B. True / False “1048576”

C. True / False “ request”

D. True / False “SERVERPORT”

E. True / False “UNLINK”

To handle failures, the RPC stub on the client resends a request if it doesn’t receive a reply within a certain
period of time. On receiving a reply for the request, the stub returns.

6. [8 points]: Assume a single client. Which of the following requests are idempotent (i.e., the
request can be repeated and will always produce the same result as if the request completed once)?

(Circle True or False for each choice.)

A. True / False UPLOAD

B. True / False DOWNLOAD

C. True / False UNLINK

D. True / False START

Name:

6.033 Spring 2006, Quiz 1 Page 6 of 12

structure message {
address destination; // destination address
int dest port; // destination port
address source; // source address
int src port; // source port
int opcode; // operation code of request
int result; // result of request
char name[MAXNAMELEN]; // name of file, no more than MAXNAMELEN charaters
int len; // length of data
char data[1048576]; // data of message, up to 1 Megabyte of characters
}

procedure SERVER()
structure message request, reply;
int fd;
while TRUE do
request ← RECEIVE MESSAGE(SERVERPORT); // Wait for a message sent to port SERVERPORT
if request.opcode = UPLOAD then // upload request?
fd ← OPEN(request.name, O EXCL|O CREATE|O WRONLY); // Writing an existing file is an error
if fd < 0 then reply.result ← fd; // error opening the file?
else{
reply.result ← WRITE(fd, request.data, request.len);
CLOSE(fd);
}

else ifrequest.opcode = DOWNLOAD then // download request?
fd ← OPEN(name, READ ONLY); // Attempt to open the file for reading
if fd < 0 then reply.result ← fd; // error opening the file?
else{
reply.len ← request.len;
reply.result ← READ(fd, reply.data, reply.len);
CLOSE(fd);
}

else ifrequest.opcode = UNLINK then // unlink request?
reply.result ← UNLINK (request.name);

else ifrequest.opcode = START then // start a program?
reply.result ← RUN(request.name);

else{ // reply with an error
reply.result ← ERROROPCODE;

}
reply.destination ← request.source;
reply.dest port ← request.src port;
reply.source ← MYMACHINE ;
reply.src port ← SERVERPORT;
reply.opcode ← request.opcode;
SEND MESSAGE(reply);

Figure 1: Ben’s server. (Some strings are underlined for question 5.)

Name:

6.033 Spring 2006, Quiz 1 Page 7 of 12

7. [9 points]: A single client uses the server. The client sends an RPC to the server to upload
a file and then sends another RPC to unlink the file. The client repeats this sequence many times.
Occasionally the client observes that the reply from the server for the unlink RPC contains an error,
indicating that the file didn’t exist. Which of the following faults could, by itself, caused the observed
behavior? (Remember that the client retries each request until it receives a reply.)

(Circle True or False for each choice.)

A. True / False The server failed after the server processed an earlier unlink request but before
sending a reply, and then restarted.

B. True / False The network between the client and the server lost a reply.

C. True / False The network between the client and the server lost a request.

D. True / False The server is so slow that the client, for a given unlink RPC, resends the request
and then receives the reply for the first request for that RPC.

Ben measures the performance of the server on BOSv1 when it runs many programs concurrently, and is
disappointed with the measured performance. Ben modifiesRUN to make the system faster. The new version
of RUN loads the program in the kernel address space and creates a thread to run the program in the kernel
address space. Thus, all threads run in kernel mode in a single address space. The threads are scheduled
preemptively. Ben names this version BOSv2.

8. [8 points]: What program errors can BOSv1 (where each program runs in its own user-level
address space) isolate well and BOSv2 not?

(Circle True or False for each choice.)

A. True / False Writes to arbitrary addresses

B. True / False Reads from arbitrary addresses

C. True / False Jumps to arbitrary addresses

D. True / False Infinite loops

Name:

6.033 Spring 2006, Quiz 1 Page 8 of 12

9. [8 points]: Which overheads can BOSv2 avoid (compared to BOSv1)?
(Circle True or False for each choice.)

A. True / False The performance overhead of entering and leaving the kernel.

B. True / False The performance overhead of switching the page-map address register.

C. True / False The memory overhead of allocating a stack per thread.

D. True / False The performance overhead of loadingPC andSPwhen switching threads.

10. [8 points]: Programs in BOSv1 assume they run in their own virtual address space. In BOSv2
the programs and the kernel share a single virtual address space. Ben doesn’t want to recompile or
inspect (and perhaps rewrite) all BOSv1 programs. Which of the following properties of a BOSv1
program would allow Ben to start the program in BOSv2 (usingRUN) without having to recompile or
rewrite the program?

(Circle True or False for each choice.)

A. True / False All addresses of the program are PC relative.

B. True / False Global data structures in the program are addressed using absolute addresses.

C. True / False The program uses multiple threads.

D. True / False Procedures in the program are addressed using absolute addresses.

Name:

6.033 Spring 2006, Quiz 1 Page 9 of 12

Ben just learned about semaphores, a coordination primitive similar to eventcounts, but different. Semaphores
support the following two operations:

• DOWN (semaphoresem): decrement ifsem> 0 and return; otherwise, wait until another thread
increasessemand then try to decrement again.

• UP (semaphoresem): incrementsem, wake up all threads waiting onsem, and return.

For completeness, figure 2 lists the pseudocode, which works in the same style as the implementation of
eventscounts in the class notes (see section E.3 of chapter 5).ACQUIRE uses a spin lock and turns off
interrupts.RELEASEreleases the lock and enables interrupts.

For all questions you can assume that the thread manager implements the proceduresUP andDOWN cor-
rectly; that is, you can just skim the code—there are no quiz traps. In particular, the thread manager correctly
guarantees thatUP and DOWN are atomic with respect to concurrent invocations by threads and interrupt
handlers.

shared lock threadtable lock; // the global lock for the thread manager
procedure UP(semaphore sem)

ACQUIRE(threadtable lock);
sem ← sem + 1;
WAKEUP(sem); // set the state of all threads that are waiting on sem to RUNNABLE
RELEASE(threadtable lock);

procedure DOWN(semaphore sem)
ACQUIRE(threadtable lock);
while sem < 1 do { // A

SETWAITING(sem); // B; set this thread’s state to WAITING and record that it is waiting on sem
RELEASE(threadtable lock);
YIELD(CONTINUE); // calling thread releases the processor
ACQUIRE(threadtable lock);
}
sem ← sem− 1;
RELEASE(threadtable lock);

Figure 2: Implementation of semaphores.WAKEUP, SETWAITING, andYIELD are procedures implemented by the thread
manager.WAKEUP sets the state of all threads that are waiting on semaphoresemto RUNNABLE. SETWAITING sets the state
of the calling thread to WAITING and records the semaphore the thread is waiting on.

Name:

6.033 Spring 2006, Quiz 1 Page 10 of 12

UsingDOWN andUP, Ben implements a bounded buffer for each port as follows:

structure port info {
semaphore n ← 0;
structure message buffer[NMSG]; // an array of NMSG messages
long integer in ← 0;
long integer out ← 0;
} port infos[NPORT]; // an array of portinfo’s

procedure INTERRUPT(structure message m)
// an interrupt announcing the arrival of message m

structure port info d; // a local reference to a portinfo structure
d ← port infos[m.dest port];
if d.in− d.out ≥ NMSG then { // is there space in the buffer?
return; // No, return; i.e., throw message away.
}
d.buffer[d.in mod NMSG] ← m;
d.in ← d.in + 1;
UP(d.n);

procedure RECEIVE MESSAGE(dest port)
structure port info d; // a local reference to a portinfo structure
d ← port infos[dest port];
DOWN(d.n);
m ← d.buffer[d.out mod NMSG];
d.out ← d.out + 1;
return m;

The BOS implementation maintains an array ofport infos. Eachport info contains a bounded buffer. When
a message arrives from the network, it generates an interrupt, and the network interrupt handler (INTERRUPT)
puts the message in the bounded buffer of the port specified in the message. If there is no space in that
bounded buffer, the interrupt handler throws the message away. A thread (e.g., Ben’s server) consumes a
message by callingRECEIVE MESSAGE, which removes a message from the bounded buffer of the port it is
receiving from.

To coordinate the interrupt handler and a thread callingRECEIVE MESSAGE, the BOS implementation uses
a semaphore. For each port, BOS keeps a semaphoren that counts the number of messages in the port’s
bounded buffer. Ifn reaches 0, the thread callingDOWN in RECEIVE MESSAGEwill enter the WAITING
state. WhenINTERRUPTadds a message to the buffer, it callsUP onn, which will wake up the thread (i.e.,
set the thread’s state to RUNNABLE).

Name:

6.033 Spring 2006, Quiz 1 Page 11 of 12

11. [16 points]: Assume that there are no concurrent invocations ofINTERRUPT, and that there are
no concurrent invocations ofRECEIVE MESSAGEon the same port. Which of the following statements
is true about the implementation ofINTERRUPTandRECEIVE MESSAGE?

(Circle True or False for each choice.)

A. True / False There are no race conditions between two threads that invokeRECEIVE MESSAGE

concurrently on different ports.

B. True / False The complete execution ofUP in INTERRUPTwill not be interleaved between the
statements labeled A and B inDOWN.

C. True / False BecauseDOWN and UP are atomic, the processor instructions necessary for
subtracting ofsemin DOWN and adding tosemin UP won’t be interleaved incorrectly.

D. True / False Becausein andoutmay be shared between the interrupt handler runningINTER-
RUPT and a thread callingRECEIVE MESSAGEon the same port, it is possible forINTERRUPT

to throw away a message even though there is space in the bounded buffer.

Name:

6.033 Spring 2006, Quiz 1 Page 12 of 12

Alyssa claims that semaphores can also be used to make operations atomic. She proposes the following
modification to aport info structure andRECEIVE MESSAGE to allow threads to concurrently invokeRE-
CEIVE MESSAGEon the same port without race conditions (only the commented lines changed):

structure port info {
semaphore n ← 0;
semaphore mutex ←????; // see question below
message buffer[NMSG];
long integer in ← 0;
long integer out ← 0;
} port infos[NPORT];

procedure RECEIVE MESSAGE(dest port)
structure port info d;
d ← port infos[dest port];
DOWN(d.mutex); // enter atomic section
DOWN(d.n);
m ← d.buffer[d.out mod NMSG];
d.out ← d.out + 1;
UP(d.mutex); // leave atomic section
return m;

12. [8 points]: To what value canmutexbe initialized to avoid race conditions and deadlocks when
multiple threads callRECEIVE MESSAGEon the same port?

(Circle True or False for each choice.)

A. True / False 0

B. True / False 1

C. True / False 2

D. True / False -1

End of Quiz I

Name:

