Fault-tolerance

6.033 Lecture 14
Frans Kaashoek
With slides from Sam Madden
Where are we in 6.033?

- Strong form of modularity: client/server
 - Limits propagation of effects
 - In a single computer using OS
 - In a network using Internet
- Two limitations:
 - Isolates only benign mistakes (e.g., programming errors)
 - No recovery plan
Extending C/S to handling failures

- Can we do better than returning an error?
 - Keep computing despite failures?
 - Defend against malicious failures (attacks)?

- Rest of semester: handle these “failures”
 - Fault-tolerant computing
 - Computer security
Plan for fault-tolerant computing

• General introduction: today
 • Recovery/Replication

• Transactions: next 4 lectures
 • updating permanent data in the presence of concurrent actions and failures

• Replication state machines: 2 more
 • Keep computing despite failures
A fatal exception OE has occurred at 0028:C00068F8 in PPT.EXE<01> + 000059F8. The current application will be terminated.

* Press any key to terminate the application.
* Press CTRL+ALT+DEL to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue
Availability in practice

- Carrier airlines (2002 FAA fact book)
 - 41 accidents, 6.7M departures
 ✓ 99.9993% availability

- 911 Phone service (1993 NRIC report)
 - 29 minutes per line per year
 ✓ 99.994%

- Standard phone service (various sources)
 - 53+ minutes per line per year
 ✓ 99.99+%

- End-to-end Internet Availability
 ✓ 95% - 99.6%
Barracuda® 7200.10

Experience the industry’s proven flagship perpendicular 3.5-inch hard drive

- 60 GB to 750 GB • SATA 1.5Gb/s or 3Gb/s and PATA 100

Key Advantages
- First 3.5-inch drive to utilize capacity- and reliability-boosting perpendicular recording technology
- First drive to reach 750 GB—a full year ahead of competition—enabling new solutions for data-intensive applications.
- Industry’s most proven and established desktop hard drive available today—more than 16 million shipped to date
- “One-stop shopping” with a broad range of capacity, cache and interface options for all your computing needs
- Best-in-class environmental specifications and reliability features
- Adaptive fly height offers consistent read/write performance from the beginning to the end of your computing workload.
- Clean Sweep automatically calibrates your drive.
- Directed Offline Scan runs diagnostics when storage access is not needed.
- RoHS-compliant design assures an environmentally conscious product.
- Enhanced G-Force Protection™ defends against handling damage.
- Seagate® SoftSonic™ motor enables whisper-quiet operation.

Best-Fit Applications
- Desktop and High-Performance PCs
 - Gamer PCs
 - Workstations
 - High-end PCs
 - Desktop RAID
 - Mainstream PCs
 - Point-of-sale devices/ATMs
 - USB/FireWire/eSATA personal external storage

<table>
<thead>
<tr>
<th>Contact Start-Stops</th>
<th>50,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonrecoverable Read Errors per Bits Read</td>
<td>1 per 10^{14}</td>
</tr>
<tr>
<td>Mean Time Between Failures (MTBF, hours)</td>
<td>700,000</td>
</tr>
<tr>
<td>Annualized Failure Rate (AFR)</td>
<td>0.34%</td>
</tr>
<tr>
<td>Reliability/Data Integrity</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Mean Time Between Failures (MTBF, hours)</td>
<td>1.2 million</td>
</tr>
<tr>
<td>Reliability Rating at Full 24x7 Operation (AFR)</td>
<td>0.73%</td>
</tr>
<tr>
<td>Nonrecoverable Read Errors per Bits Read</td>
<td>1 sector per 10E15</td>
</tr>
<tr>
<td>Error Control/Correction (ECC)</td>
<td>10 bit</td>
</tr>
<tr>
<td>Interface Ports</td>
<td></td>
</tr>
<tr>
<td>SATA</td>
<td>Single</td>
</tr>
<tr>
<td>SAS</td>
<td>Dual</td>
</tr>
</tbody>
</table>
Disk failure conditional probability distribution

- Infant mortality
- Burn out
- Stable failure period
- Expected operating lifetime

1 / (reported MTTF)
Disk Age vs. $\Pr(\geq 1 \text{ Reported Read Failure})$

$\Pr(\text{Reported Read Failure})$

Disk Age (Months)

Bairavasundaram et al., SIGMETRICS 2007
Relative frequency of hardware replacement

<table>
<thead>
<tr>
<th>Component</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>34.8</td>
</tr>
<tr>
<td>Memory</td>
<td>20.1</td>
</tr>
<tr>
<td>Hard drive</td>
<td>18.1</td>
</tr>
<tr>
<td>Case</td>
<td>11.4</td>
</tr>
<tr>
<td>Fan</td>
<td>8.0</td>
</tr>
<tr>
<td>CPU</td>
<td>2.0</td>
</tr>
<tr>
<td>SCSI Board</td>
<td>0.6</td>
</tr>
<tr>
<td>NIC Card</td>
<td>1.2</td>
</tr>
<tr>
<td>LV Power Board</td>
<td>0.6</td>
</tr>
<tr>
<td>CPU heatsink</td>
<td>0.6</td>
</tr>
</tbody>
</table>

10,000 machines

Pr(failure in 1 year) ~ 0.3

Schroeder and Gibson, FAST 2008
Fail-fast disk

```c
failfast_get (data, sn) {
    get (s, sn);
    if (checksum (s.data) = s.cksum) {
        data ← s.data;
        return OK;
    } else {
        return BAD;
    }
}
```
careful_get (data, sn) {
 r ← 0;
 while (r < 10) {
 r ← failfast_get (data, sn);
 if (r = OK) return OK;
 r++;
 }
 return BAD;
}
Replicated Disks

write (sector, data):
 write(disk1, sector, data)
 write(disk2, sector, data)

read (sector, data):
 data = careful_get(disk1, sector)
 if error
 data = careful_get(disk2, sector)
 if error
 return error
 return data
Technical specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors</td>
<td>2–16 per node</td>
</tr>
<tr>
<td></td>
<td>Intel Itanium processor 9100 series processors, 1.6 GHz single core processors</td>
</tr>
<tr>
<td>Cache</td>
<td>12 MB L3</td>
</tr>
<tr>
<td>RAM standard/maximum</td>
<td>Minimum: 4 GB</td>
</tr>
<tr>
<td></td>
<td>Maximum: 16 GB (32 GB²)</td>
</tr>
<tr>
<td>RAM type/speed</td>
<td>PC2100 ECC registered DDR266A/B</td>
</tr>
<tr>
<td>ServerNet I/O</td>
<td>Minimum: 10</td>
</tr>
<tr>
<td></td>
<td>Maximum: 60</td>
</tr>
<tr>
<td>I/O adapters supported</td>
<td>Fibre Channel, Gigabit Ethernet</td>
</tr>
<tr>
<td>Fibre Channel disk modules</td>
<td>14 disks per module</td>
</tr>
<tr>
<td>Disk drives supported</td>
<td>146 GB and 300 GB 15K RPM Fibre Channel internal hard disk drive drives</td>
</tr>
<tr>
<td></td>
<td>HP Disk Array family (e.g., XP24000, XP20000, XP12000, and XP10000 disk arrays)</td>
</tr>
<tr>
<td>Standard features</td>
<td>N + 1 power supplies</td>
</tr>
<tr>
<td></td>
<td>N + 1 fans</td>
</tr>
</tbody>
</table>

Although 32 GB is feasible, the Integrity Nc8000 NC10200 Storage support availability is up to 16 GB.
How about an error in software?

• Big problem!
• Software for fault tolerant systems must be written with great care
 • Stringent development practices
 • Well-defined stable specification
 • Modeling, simulation, verification, etc.
 • N-version programming is tricky
• Will also be a problem for secure software
• Good design: small fraction is critical