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Overview 
•  Theme: strong isolation for operating 

systems 
•  OS organizations: 

– Monolithic kernels 
– Microkernel 
– Virtual machines 
 



OS abstractions 

•  Virtual memory 
•  Threads 
•  File system 
•  IPC (e.g., pipes) 
•  … 
 



Monolithic kernel (e.g., Linux) 

•  Kernel is one large C program 
•  Internal structure  

– E.g., object-oriented programming style 
•  But, no enforced modularity 

Kernel 

sh ls 

K 

U 



Kernel program is growing 

•  1975 Unix kernel: 10,500 lines of code 
•  2012: Linux 3.2 

   300,000 lines: header files (data structures, APIs) 
 490,000 lines: networking 

   530,000 lines: sound 
 700,000 lines: support for 60+ file systems 

1,880,000 lines: support for 25+ CPU architectures 
5,620,000 lines: drivers 
 
9,930,000 Total lines of code 



Linux kernel has bugs 

5,000 bug reports fixed in ~7 years è 2+ day  



How bad is a bug? 

•  Demo: 
–  Insert kernel module 
– Every 10 seconds overwrites N locations in 

physical memory 
– N = 1, 2, 4, 8, 16, 32, 64, …. 

•  What N makes Linux crash? 



Observations 

•  Linux lasts surprisingly long 
•  Maybe files were corrupted 
•  Every bug is an opportunity for attacker 

•  Can we enforce modularity within 
kernel? 

 
 



Microkernel organization: 
Apply Client/Server to kernel 

•  User programs interact w. OS using RPC 
•  Examples: QNX, L4, Minix, etc. 

IPC, threads, page tables 

sh ls pager net driver … FS 



Challenges 

•  Communication cost is high 
– Much higher than procedure call 

•  Isolating big components doesn’t help 
–  If entire FS crashes, system unusable 

•  Sharing between subsystems is difficult 
– Share buffer cache between pager and FS 
 

•  Requires careful redesign 



Why is Linux not a pure 
microkernel? 

•  Many dependencies between components 
•  Redesign is challenging 

– Trade-off: new design or new features? 
•  Some services are run as user programs: 

– X server, some USB drivers, SQL database, 
DNS server, SSH, etc. 



Goal: isolation and compatibility 

•  Idea: run different programs on different 
computers 

•  Each computer has its on own kernel 
–  If one crashes, others unaffected 
– Strong isolation 

•  But, cannot afford that many computers 
– Virtualization and abstraction …. 
– New constraint: compatibility 



Approach: virtual machines 

•  Pure virtualization of hardware 
– CPU, memory, devices, etc. 

•  Provides strong isolation 

Virtual machine monitor 

sh ls 

Linux kernel Linux kernel 

Host 

Guest 

x86 x86 



How to implement VMM? 

•  One approach: pure emulation (e.g., QEMU) 
– VMM interprets every guest instruction 
 



Emulation of CPU 



Goal: “emulate” fast 

•  Observation: guest instructions are 
same has hardware instructions 

•  Idea: run most instructions directly  
– Fine for user instructions (add, sub, mul) 
– But not for, e.g., privileged instructions 
– What hardware state must be virtualized to 

run several existing kernel? 
 



Kernel virtualization 

•  Each kernel assumes its manages: 
– Physical memory 
– Page-table pointer 
– U/K bit 
–  Interrupts, registers, etc. 

•  How to virtualize these? 



Virtual Machines 
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Need to 
virtualize: 
1.  memory 
2.  U/K bit 
3.  disk 

sh ls 



Memory virtualization 

•  Idea: an extra level of page tables 

Guest virtual address 

Guest physical addresses 

Host physical addresses 

Kernel page table 

VMM page table 



Virtualizing page table pointer 

•  Guest OS cannot load PTP 
–  Isolation violated 
– Guest OS will specify guest physical 

addresses 
•  Not an actual DRAM location 



A solution: shadow page tables 

•  VMM intercepts guest OS loading PTP 
•  VMM iterates over guest PT and 

constructs shadow PT: 
– Replacing guest physical addresses with 

corresponding host physical addresses 
•  VMM loads host physical address of 

shadow PT into PTP 
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Translating Page Tables 

Guest OS 
Page Table 

Real Page 
Table 

VA Guest PA 
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Maps app virtual 
addresses to guest 
physical addresses 

Maps app virtual 
addresses to real 
physical addresses 



Computing shadow PT 

compute_shadow_pt(guest_pt) 
For gva in 0 .. 220: 

 if guest_pt[gva] & PTE_P: 
  gpa = guest_pt[gva] >> 12  
  pa = vmm_pt[gpa] >> 12 
  shadow_pt[gva] = (pa << 12)| PTE_P 
 else:  
  shadow_pt[gva] = 0 
 

PTE_P = page is 
present 



Computing shadow PT 

compute_shadow_pt(guest_pt) 
For gva in 0 .. 220: 

 if guest_pt[gva] & PTE_P: 
  gpa = guest_pt[gva] >> 12  
  pa = vmm_pt[gpa] >> 12 
  shadow_pt[gva] = (pa << 12)| PTE_P 
 else:  
  shadow_pt[gva] = 0 
 

R/W = page is read 
only 



Virtual Machines 
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virtualize: 
1.  memory 
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3.  disk 

sh ls 



Guest modifies its PT 

•  Host maps guest PT read-only 
•  If guest modifies, hardware generates 

page fault 
•  Page fault handled by host: 

– Update shadow page table 
– Restart guest 



Virtualizing U/K bit 

•  Hardware U/K bit must be U when guest 
OS runs 
– Strong isolation 

•  But now guest cannot: 
– Execute privileged instructions 
– … 



A solution: trap-and-emulate 

•  VMM stores guest U/K bit in some location 
•  VMM runs guest kernel with U set 
•  Privileged instructions will cause an 

exception 
•  VMM emulates privileged instructions, e.g., 

– Set or read virtual U/K 
–  if load PTP in virtual K mode, load shadow 

page table 
– Otherwise, raise exception in guest OS  



Hardware support for virtualization 

•  AMD and Intel added hardware support 
– VMM operating mode, in addition to U/K 
– Two levels of page tables 

•  Simplifies job of VMM implementer: 
– Let the guest VM manipulate the U/K bit, 

as long as VMM bit is cleared. 
– Let the guest VM manipulate the guest PT, 

as long as host PT is set. 



Virtualizing devices (e.g., disk) 

•  Guest accesses disk through special 
instructions: 

•  Trap-and-emulate: 
– Write “disk” block to a file in host file 

system 
– Read “disk” block from file in host file 

system 



Benefits of virtual machines 

•  Can share hardware between unrelated 
services, with enforced modularity 
–  “Server consolidation” 

•  Can run different operating systems 
•  Level-of-indirection tricks: 

– Snapshots 
– Can move guest from one physical 

machine to another 



VMs versus microkernels 

•  Solving orthogonal problems 
– Microkernel: splitting up monolithic designs 
– VMs: run many instances of existing OS 



Summary 

•  Monolithic kernels are complex, error-prone 
– But, not that unreliable … 

•  Microkernels 
– Enforce OS modularity with client/server 
– Designing modular OS services is challenging 

•  Virtual machines 
– Multiplex hardware between several operating 

systems 


