
L6: Operating Systems
Structures

Sam Madden
madden@csail.mit.edu

6.033 Spring 2014

Overview
•  Theme: strong isolation for operating

systems
•  OS organizations:

– Monolithic kernels
– Microkernel
– Virtual machines

OS abstractions

•  Virtual memory
•  Threads
•  File system
•  IPC (e.g., pipes)
•  …

Monolithic kernel (e.g., Linux)

•  Kernel is one large C program
•  Internal structure

– E.g., object-oriented programming style
•  But, no enforced modularity

Kernel

sh ls

K

U

Kernel program is growing

•  1975 Unix kernel: 10,500 lines of code
•  2012: Linux 3.2

 300,000 lines: header files (data structures, APIs)
 490,000 lines: networking

 530,000 lines: sound
 700,000 lines: support for 60+ file systems

1,880,000 lines: support for 25+ CPU architectures
5,620,000 lines: drivers

9,930,000 Total lines of code

Linux kernel has bugs

5,000 bug reports fixed in ~7 years è 2+ day

How bad is a bug?

•  Demo:
–  Insert kernel module
– Every 10 seconds overwrites N locations in

physical memory
– N = 1, 2, 4, 8, 16, 32, 64, ….

•  What N makes Linux crash?

Observations

•  Linux lasts surprisingly long
•  Maybe files were corrupted
•  Every bug is an opportunity for attacker

•  Can we enforce modularity within
kernel?

Microkernel organization:
Apply Client/Server to kernel

•  User programs interact w. OS using RPC
•  Examples: QNX, L4, Minix, etc.

IPC, threads, page tables

sh ls pager net driver … FS

Challenges

•  Communication cost is high
– Much higher than procedure call

•  Isolating big components doesn’t help
–  If entire FS crashes, system unusable

•  Sharing between subsystems is difficult
– Share buffer cache between pager and FS

•  Requires careful redesign

Why is Linux not a pure
microkernel?

•  Many dependencies between components
•  Redesign is challenging

– Trade-off: new design or new features?
•  Some services are run as user programs:

– X server, some USB drivers, SQL database,
DNS server, SSH, etc.

Goal: isolation and compatibility

•  Idea: run different programs on different
computers

•  Each computer has its on own kernel
–  If one crashes, others unaffected
– Strong isolation

•  But, cannot afford that many computers
– Virtualization and abstraction ….
– New constraint: compatibility

Approach: virtual machines

•  Pure virtualization of hardware
– CPU, memory, devices, etc.

•  Provides strong isolation

Virtual machine monitor

sh ls

Linux kernel Linux kernel

Host

Guest

x86 x86

How to implement VMM?

•  One approach: pure emulation (e.g., QEMU)
– VMM interprets every guest instruction

Emulation of CPU

Goal: “emulate” fast

•  Observation: guest instructions are
same has hardware instructions

•  Idea: run most instructions directly
– Fine for user instructions (add, sub, mul)
– But not for, e.g., privileged instructions
– What hardware state must be virtualized to

run several existing kernel?

Kernel virtualization

•  Each kernel assumes its manages:
– Physical memory
– Page-table pointer
– U/K bit
–  Interrupts, registers, etc.

•  How to virtualize these?

Virtual Machines

OS 1 OS 2

Virtual Machine Monitor (VMM)

Virtual HW 1 Virtual HW 2

Physical HW

U/K
PTP

Page
Table

U/K
PTP

Page
Table

U/K
PTP

Page
Table

Memory Memory
Disk Disk

Disk
Memory

Need to
virtualize:
1.  memory
2.  U/K bit
3.  disk

sh ls

Memory virtualization

•  Idea: an extra level of page tables

Guest virtual address

Guest physical addresses

Host physical addresses

Kernel page table

VMM page table

Virtualizing page table pointer

•  Guest OS cannot load PTP
–  Isolation violated
– Guest OS will specify guest physical

addresses
•  Not an actual DRAM location

A solution: shadow page tables

•  VMM intercepts guest OS loading PTP
•  VMM iterates over guest PT and

constructs shadow PT:
– Replacing guest physical addresses with

corresponding host physical addresses
•  VMM loads host physical address of

shadow PT into PTP

VMM
intercepts

Shadow Page Tables

OS 1

Virtual Machine Monitor (VMM)

Virtual HW 1

Physical HW

Virt. PTP

PTP

Virtual
Page
Table

Virt.
Memory

VMM
Translates
Page Guest
OS Table

VMM installs
shadow page table
mapping from app
virtual addresses
to physical
addresses

Virtual
Page
Table

Page
Table

Page
Table

Translating Page Tables

Guest OS
Page Table

Real Page
Table

VA Guest PA
0x01 0xA2

0x02 0xA3

VA PA
0x01 0xC1

0x02 0xC4

VMM Page
Table

Guest
PA

PA

0xA1 0xC0

0xA2 0xC1

0xA3 0xC4

VA PA
0x01 0xC1

VA PA

Maps from guest
physical address to
real physical
addresses

Maps app virtual
addresses to guest
physical addresses

Maps app virtual
addresses to real
physical addresses

Computing shadow PT

compute_shadow_pt(guest_pt)
For gva in 0 .. 220:

 if guest_pt[gva] & PTE_P:
 gpa = guest_pt[gva] >> 12
 pa = vmm_pt[gpa] >> 12
 shadow_pt[gva] = (pa << 12)| PTE_P
 else:
 shadow_pt[gva] = 0

PTE_P = page is
present

Computing shadow PT

compute_shadow_pt(guest_pt)
For gva in 0 .. 220:

 if guest_pt[gva] & PTE_P:
 gpa = guest_pt[gva] >> 12
 pa = vmm_pt[gpa] >> 12
 shadow_pt[gva] = (pa << 12)| PTE_P
 else:
 shadow_pt[gva] = 0

R/W = page is read
only

Virtual Machines

OS 1 OS 2

Virtual Machine Monitor (VMM)

Virtual HW 1 Virtual HW 2

Physical HW

U/K
PTP

Page
Table

U/K
PTP

Page
Table

U/K
PTP

Page
Table

Memory Memory
Disk Disk

Disk
Memory

Need to
virtualize:
1.  memory
2.  U/K bit
3.  disk

sh ls

Guest modifies its PT

•  Host maps guest PT read-only
•  If guest modifies, hardware generates

page fault
•  Page fault handled by host:

– Update shadow page table
– Restart guest

Virtualizing U/K bit

•  Hardware U/K bit must be U when guest
OS runs
– Strong isolation

•  But now guest cannot:
– Execute privileged instructions
– …

A solution: trap-and-emulate

•  VMM stores guest U/K bit in some location
•  VMM runs guest kernel with U set
•  Privileged instructions will cause an

exception
•  VMM emulates privileged instructions, e.g.,

– Set or read virtual U/K
–  if load PTP in virtual K mode, load shadow

page table
– Otherwise, raise exception in guest OS

Hardware support for virtualization

•  AMD and Intel added hardware support
– VMM operating mode, in addition to U/K
– Two levels of page tables

•  Simplifies job of VMM implementer:
– Let the guest VM manipulate the U/K bit,

as long as VMM bit is cleared.
– Let the guest VM manipulate the guest PT,

as long as host PT is set.

Virtualizing devices (e.g., disk)

•  Guest accesses disk through special
instructions:

•  Trap-and-emulate:
– Write “disk” block to a file in host file

system
– Read “disk” block from file in host file

system

Benefits of virtual machines

•  Can share hardware between unrelated
services, with enforced modularity
–  “Server consolidation”

•  Can run different operating systems
•  Level-of-indirection tricks:

– Snapshots
– Can move guest from one physical

machine to another

VMs versus microkernels

•  Solving orthogonal problems
– Microkernel: splitting up monolithic designs
– VMs: run many instances of existing OS

Summary

•  Monolithic kernels are complex, error-prone
– But, not that unreliable …

•  Microkernels
– Enforce OS modularity with client/server
– Designing modular OS services is challenging

•  Virtual machines
– Multiplex hardware between several operating

systems

