
BeaverCMS : 6.033 Design Project

Fiona Zhang, Nyle Sykes, Ashwath Thirumalai

Massachusetts Institute of Technology

March 22, 2019

1 Introduction 1

2 System Design 2
2.1 Central Server and Data Structures . 2
2.2 Identities and Access Control . 3
2.3 File System . 3

3 Networking 5
3.1 MFS Submissions . 5
3.2 Video Submissions and Voting . 6
3.3 Peer Review Submissions . 6
3.4 Staff Grading . 6
3.5 Gradescope Integration . 7
3.6 Entering Grades . 7
3.7 Late Assignments . 7
3.8 Killing Transactions . 8

4 Conclusion 8

1 Introduction

The staff of the MIT course 6.033, the required undergraduate course on computer systems
design, has decided to upgrade its current fragmented grading infrastructure. Currently, the
infrastructure splits submitting assignments and viewing grades across multiple different, un-
connected systems. Furthermore, it does not support forming teams, sharing works in progress,
and submitting group assignments and necessitates manual verification for team assignments,
deadlines, and penalties. The 6.033 staff wants to modernize this infrastructure by creating a
centralized system to facilitate student team work, provide a unified place to view grades, and
support additional video upload functionality while retaining similarly rigorous permissions from
the current implementation.

To meet these goals, we propose the Beaver Course Management System (BeaverCMS). This
system integrates various MIT-provided modules for file systems, locking, syncing, and identity
verification, Gradescope, and a central server containing multiple relational databases. The
system aims to abstract much of the work currently done manually and provide a seamless,
central location to submit and grade assignments, provide and view feedback, and collaborate
on the Design Project. The sections that follow specify our implementations of the modules and
integration between them as well as how they achieve our key design goals of simplicity, security,
and reliability.

1

2 System Design

BeaverCMS extends and integrates five existing systems: the MIT Identity Service (MIDS), MIT
File Service (MFS), MIT Sync Service (MSS), MIT Lock Service (MLS), and Gradescope. These
modules and their relationships are illustrated in Figure 1 below.

Figure 1: System overview

The core of this system is a single, centralized mirrored-disk server that stores various relational
databases. This central server connects users, who can be students, student graders, or members
of the course staff, to the other modules in the system. The design of this system prioritizes
simplicity, security, and reliability. Simplicity allows the students and staff to focus on the
material of the course rather than worry about a complex grading or submission system. Security
is crucial in maintaining users’ privacy regarding grades and assignment submissions. Lastly,
the design focuses on reliability over performance since confidence in the system from both the
student and the staff is more important than the time required to upload an assignment or
provide feedback.

2.1 Central Server and Data Structures

The centralized server stores all of the information about the class, including, but not limited
to, students, grades, assignments, teams, and recitations. To achieve simplicity in our data
structures, our server stores and maintains a variety of relational databases linking students, staff,
assignments, and grades. These databases facilitate modifying and quickly accessing information
and support SQL querying. Table 1 below lists the databases as well as the variables that they
store.

2

Table 1: Database Contents

Database Name Contents
gradesDB Student Name (Kerberos name), Assignment ID, Number

of Points Received for Assignment, Status (On Time/Late),
Timestamp of Last Query, Published (True/False)

assignmentsDB Assignment Name, Assignment ID, Total Possible Points, As-
signment Due Date

usersDB User Kerberos Name, User Status (Active/Inactive), User
Role (Student/Student Grader/TA/Administrator)

teamsDB Student Kerberos Name, Team Kerberos ID
sectionsDB Section ID, Recitation Team ID, Section TA Kerberos Name,

Section Instructor Kerberos Name, Section Location, Section
Time, Section Type (Recitation/Tutorial)

sectionAssignmentsDB Student Kerberos Name, Assigned Section ID
identitiesDB Kerberos Name, Home Directory in the MIT File System

(MFS)
submissionDB Kerberos Name, File Name, Assigment ID, Timestamp, Final

(True/False), On Time (True/False)
recitationTeamsDB Kerberos Name, Recitation Team ID

We choose to use relational databases because they are highly flexible, well established, and
simple to maintain. Although they struggle with more complex data-types, this is likely not to
be a concern with this specific use case.

2.2 Identities and Access Control

BeaverCMS’s users include students, student graders, and members of the course staff. The
system heavily prioritizes security, as this is a strength of the current 6.033 infrastructure. Strong
security protocols require managing and authenticating the identities of individuals accessing the
system.

Every query from a user to BeaverCMS must first pass through MIDS to verify the identity of
the user. While each student and member of staff has a MIDS identity associated with their
Kerberos ID, MIDS also supports the creation of additional Kerberos IDs. Our system leverages
this functionality to create additional Kerberos IDs for Design Project teams, recitation team
staff, recitation teams, and the whole class. Since MIDS does not support querying for specific
roles or checking if a student belongs to a certain Design Project team or recitation, our system
stores these relationships in the databases in the central server.

Not only is the specific individual’s identity authenticated by MIDS, these databases allow for
secure access control to specific files in MFS. A simple query can verify that a recitation leader
has permissions to view a file of one of their students or that the Course Administrator has
permissions to view the grades of the entire class. Since these databases are easily maintainable,
a comparable level of security to the current implementation is thus kept in this new system.

2.3 File System

BeaverCMS augments the existing MFS interface to create a customized file system for 6.033 that
distinguishes between different submissions of the same assignment and stores staff feedback.

Individual and Design Project team identities are automatically provided corresponding home
directories in the file system. An individual student’s home directory provides a location for

3

submissions of an individual assignment such as a system critique, and a Design Project team’s
home directory provides a location for students in the same team to work in a shared file space.
Upon creation of a new identity in MIDS, a protocol creates a “FINAL” directory in the home
directory and grants the recitation team staff identity access. This directory stores the most
recent (or user-chosen) file to be graded, while all other submitted files exist in the main home
directory. Figure 2 below illustrates this file structure.

Figure 2: MFS contains a directory for each student and each team.

The simplicity of the system is enforced through a simple nomenclature for submitted assignment
files that distinguishes between different assignments, the number of that assignment, and the
number of that submission. This design goal is furthered through the handling of “FINAL”
submissions. The most recent file is assumed to be the final one; however, the user can designate
an alternate submission, which simply swaps this file with the file from the “FINAL” directory.

This file system also handles staff grades and comments. When a staff member submits grades
and comments for a given submission, this file is stored in the “FINAL” directory with a similar
naming scheme to differentiate between multiple graders submitting multiple sets of comments.

4

3 Networking

The following section details specific interactions between modules outlined above and corre-
sponding key design decisions.

3.1 MFS Submissions

BeaverCMS’s submission protocols are designed to optimize for reliability. This is achieved
through failing fast in the case of errors and redundancy in the central server.

BeaverCMS stores a queue of submission requests. The system processes requests at the top of
the queue and allows for up to four concurrent submission processes to run on the central server.
A submission request consists of the Kerberos ID of the sender and the properly named assign-
ment file. Allowing four concurrent submission processes to run at the same time accelerates the
upload process and ultimately improves the reliability of the system. If a file slows down one
submission process or if there is high traffic due to many students attempting to upload at once,
this system has built-in redundancy to ensure that a student’s valid submission will be recorded
and stored.

BeaverCMS processes a submission request by attempting to authenticate the Kerberos ID by
querying MIDS and receiving the relevant Kerberos name in case of success. BeaverCMS then
ensures that the Kerberos name is in usersDB. If either of these authentication steps fail, then
the system fails fast and returns an error to the client stating that the provided Kerberos ID is
invalid. Failing silently for user submissions should be avoided to ensure that the student knows
that they must re-attempt the submission.

After authentication, BeaverCMS then connects to MFS and uses the write file function to
write the submission file to the directory corresponding to the Kerberos name returned from
MIDS. Specifically, the file is written to a subdirectory under the name of the assignment ID.
BeaverCMS can find the directory path by looking at the identitiesDB relational database table.

Figure 3: When a file is submitted, it is placed in a queue. The client then periodically queries
the queue and database to determine the status of their upload.

To further bolster reliability of the system, BeaverCMS also provides functionality for a client to

5

verify whether an upload was successful. If a client sends a verification request with a Kerberos
ID and a file name, BeaverCMS can authenticate the Kerberos ID and check in the corresponding
directory if a file with the given file name exists. This protocol returns a true/false result to the
client. Figure 3 illustrates the work flow of submitting a file and periodically checking to ensure
receipt.

3.2 Video Submissions and Voting

Our system supports the functionality for Design Project teams to submit 5 to 8 minute videos
and view and vote on other teams’ video submissions. Since these files are significantly larger
(approx. 100 MB) than other files, we implement submission differently in order to maximize
reliability.

Videos are stored in the directory that is visible to all 6.033 users (i.e the home directory of
the whole class identity) and named with their team Kerberos name. Teams must use MSS to
connect to MFS in order to upload their video. Specifically, they use the sync upload function to
upload their video to the class folder. When a student or team would like to view another team’s
video, they can run the sync download function through MSS. We choose to use MSS instead
of the MFS submission process for video submissions so that reads and writes are synchronized
and to allow upload and download processes to be terminated if they take too long. A student
can submit their ranking of their top 5 videos like any other file submission to BeaverCMS.

3.3 Peer Review Submissions

Design Project teams must submit their DPR using their recitation team identity in order to
be peer-reviewed. This places the files into the home directory of the recitation team, allowing
anyone with that recitation team identity to access the files and review their assigned report.

Upon completion, each student can submit their peer review like any other submission, described
above in 3.1.

3.4 Staff Grading

BeaverCMS prioritizes simplicity and security when handling grading of submitted assignments.

In order for a staff member to grade assignments on the MFS, they must pull the assignments
from the file system, grade them and write comments in a file, and query the server to submit
the grade and file with comments.

When a recitation team staff member wants to download in bulk all of the submissions from
their recitation team for a given assignment, they can send a request to BeaverCMS with the
assignment name. BeaverCMS can query recitationTeamsDB to receive a list of student Kerberos
names and query MFS using download file to extract and return the desired files from the
“FINAL” directories of these students. If this staff member only wants to download a specific
student’s submission for one assignment, they can query BeaverCMS with the student’s Kerberos
name and assignment name, and BeaverCMS will again query MFS to extract and return the
desired file. Both of these methods of extracting submitted assignments from the file system
abstract away almost all of the work from the staff member, achieving greater simplicity than
the current system.

If either of these cases fail, the only explanation would be a lack of permission to access the
student’s directory. This could be due to a miscommunication or typographical error. In either
case, BeaverCMS forwards this error back to the client.

Upon grading the received submission, the staff member will send BeaverCMS the grade and/or
comments along with the student’s Kerberos name and assignment name. BeaverCMS names

6

the comments file accordingly and adds it to the student’s or team’s “FINAL” directory and
adds the grade to the gradesDB database.

For bulk grading submissions, BeaverCMS maps each student’s Kerberos name to their grade
and comment files and processes each request one at a time.

In order for the publication function to work and for all students to see their grades at the
same time, the grades are initially designated as unpublished and the client will not display
those grades to the student. In order to publish the grades, the staff member runs the publish
function along with the name of the assignment. This will update the status of the grades such
that the client allows the students to view their grades.

If there are multiple graders grading the same submission by the same student for the same
assignment, the system treats this as multiple grading events which corresponds to multiple
entries in the gradesDB database.

3.5 Gradescope Integration

Pulling grades from Gradescope is the only case where BeaverCMS must interact with a third-
party system. As such, this protocol is made as simple as possible to avoid over-reliance on
third-party support.

To pull grades from Gradescope, calls to the pull gradescope grades() function are made period-
ically up until the regrade period is over. The result is stored as a CSV data structure and then
parsed into inputs for gradesDB. The timestamp of the last query is also stored in gradesDB for
convenience.

3.6 Entering Grades

For certain assignments, recitation team staff can manually enter the grades for each student
or team. In this case, the recitation team staff can send such a request to BeaverCMS with
either a single student or team Kerberos and a grade, or a dictionary mapping Kerberos names
to grades. BeaverCMS will authenticate the staff member and ensure the student(s) are in the
recitation team, and then add these values to the gradesDB database.

3.7 Late Assignments

In the current implementation, deadlines and grading penalties are handled manually. Upon a
submission to the MFS, BeaverCMS queries assignmentsDB and compares the listed due date
with the current date. If this assignment is late, it marks it as such in submissionDB and notifies
the recitation leader of the late assignment. The recitation leader can then manually change this
assignment’s grade as discussed above. While it may be simpler to automate grade penalties,
we sacrifice simplicity here for flexibility, as we value the accommodating nature of the current
manual system.

7

3.8 Killing Transactions

In the case of a brown-out, the client automatically kills file uploads in process. For video
uploads, the queue is automatically cancelled.

We implement a modified TCP such that it can process a kill signal sent from MSS. When a
kill signal is issued, it signals a range of packets to ignore. If those packets have already been
received, they are discarded. Otherwise, future packets in the desired range are ignored. Once
all the packets in the range have been accounted for, the server sends back a success signal to
indicate that the file transfer has been successfully killed. This process is illustrated in Figure 4
below.

Figure 4: A kill signal is sent for packets 1-3. Packets 1, 3, and 4 have already been received.
After receiving the kill signal, packets 1 and 3 are discarded. When packet 2 is received, it is
also discarded. Finally, a kill success signal is sent pack to the client.

We choose to implement kill transaction for video submissions this way in order to ensure that
files are always correctly uploaded. Partially uploaded files present a potential threat to the
reliability and integrity of the system.

4 Conclusion

Our proposed system accomplishes the goals set out by the 6.033 staff: support of forming
teams, sharing works in progress, submitting group assignments, providing a uniform place to
view grades, and allowing for additional video upload functionality. Built with simplicity in mind,
our file system uses an intuitive naming structure, and our grading process automates much of
the work on behalf of the course staff. Our system achieves a comparable level of security as
the current implementation through integration with MIDS and proper access controls on our
databases. To ensure reliability in our system, our central server supports parallel submission
processes and is fault tolerant in the case of a brown-out.

8

