
Beaver Course Management System

Fiona Zhang , Nyle Sykes, Ashwath Thirumalai

Massachusetts Institute of Technology

May 6, 2019

{fionaz, nsykes, ashwath}@mit.edu

Olivia Brode-Roger - Friday 2 PM

1



1 Introduction 3
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 System Overview 3

3 Design 4
3.1 Central Server and Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Identities and Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Networking 9
4.1 Assignment Submissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Grading Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Evaluation 15
5.1 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Qualitative Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Conclusion 19

7 Author Contribution 19

8 Acknowledgments 19

2



1 Introduction

The MIT undergraduate course 6.033: Computer System Engineering operates on a fragmented
grading infrastructure that splits submitting assignments and viewing grades across multiple dif-
ferent, unconnected systems. Furthermore, this system does not support automatically forming
teams, sharing works in progress, and submitting group assignments and necessitates manual
verification for team assignments, deadlines, and penalties.

To address these needs, we propose the Beaver Course Management System (BeaverCMS), a
modernized infrastructure that facilitates student team work, provides a unified place to view
grades, and supports additional video upload functionality while retaining similarly rigorous
permissions from the current implementation. This system integrates various MIT-provided
modules for file systems, locking, syncing, and identity verification, Gradescope, and a central
server containing multiple relational databases. The system aims to automate much of the
work currently done manually and provide a seamless, central location to submit and grade
assignments, provide and view feedback, and collaborate on team projects. The sections that
follow specify our implementations of the modules and communication between them as well as
how they achieve our key design goals of implementation simplicity, user simplicity, authorization
security, and reliability.

1.1 Challenges

Designing this system involves the challenges of dealing with a variety of roles with their own
set of permissions and functions. As this system is designed to support the management of
a course, it must achieve reliability and correctness for the students, staff, and graders. This
system must support a wide variety of use cases such as submitting large files and handling
network outages. Moreover, it must automate as many tasks as possible, as even small manual
tasks when magnified over hundreds of students can become a significant time burden on course
staff.

2 System Overview

BeaverCMS extends and integrates five existing systems: the MIT Identity Service (MIDS), MIT
File Service (MFS), MIT Sync Service (MSS), MIT Lock Service (MLS), and Gradescope. These
modules and their relationships are illustrated in Figure 1 below.

The center of this system is a single mirrored-disk server that stores various relational databases.
This central server connects users, who can be students, student graders, or members of the
course staff, to the other modules in the system. The system supports submitting assignments
and peer reviews to the MFS, submitting large video files through the MSS, and submitting
hands-on assignments to Gradescope (4.1). It also supports staff grading and feedback for
assignments, automatic grade penalties, and student voting on the final video assignment (4.2).
Brown-outs are defined as a reduction in bandwidth to a level uniformly distributed between 1
Kb/s and 100 Kb/s for a period uniformly distributed between 10 seconds and 30 minutes which
occur approximately once every 48 hours. In the case of a brown-out, the system cancels the
upload and notifies the user.

The major goals of our system design are user simplicity, implementation simplicity, authoriza-
tion security, and reliability. User simplicity allows the students and staff to focus on the material
of the course rather than worry about a complex grading or submission system and primarily
exists to save the time of the course staff. Implementation simplicity allows for the system to be
quickly and easily built and maintained. Authorization security is crucial in maintaining users’
privacy regarding grades and assignment submissions. Lastly, the design focuses on reliability

3



Figure 1: System overview

over performance since confidence in the system from both the student and the staff is more
important than the time required to upload an assignment or provide feedback.

3 Design

3.1 Central Server and Data Structures

The central server is a 10-core 240 GB mirrored-disk system with 16 GB in RAM and 11 GB
of cache. This server stores all of the information about the class, including students, grades,
assignments, teams, and recitations.

4



Table 1: Databases

Database Name Contents
gradesDB Student Name (Kerberos name), Assignment ID, Number of

Points Received for Assignment, Late Penalty Multiplier (1 if
on-time), Timestamp of Last Query, Published (True/False)

assignmentsDB Assignment Name, Assignment ID, Total Possible Points, As-
signment Due Date, Number of Hours Late Per Letter Grade
Deducted

usersDB User Kerberos Name, User Status (Active/Inactive), User
Role (Student/Student Grader/TA/Administrator)

teamsDB Student Kerberos Name, Team Kerberos ID
sectionsDB Section ID, Recitation Team ID, Section TA Kerberos Name,

Section Instructor Kerberos Name, Section Location, Section
Time, Section Type (Recitation/Tutorial)

sectionAssignmentsDB Student Kerberos Name, Assigned Section ID
identitiesDB Kerberos Name, Home Directory in the MIT File System

(MFS)
submissionDB Kerberos Name, File Name, Assigment ID, Timestamp,

Number of Hours Late (0 if on-time)
recitationTeamsDB Kerberos Name, Recitation Team ID
videoVoteDB Student Kerberos Name, First Vote Team (team Kerberos

name of first-choice video), Second Vote Team, Third Vote
Team, Fourth Vote Team, Fifth Vote Team

inProgressSubmissionsDB Student Kerberos Name, Assignment ID, Assignment Sub-
mission Start Time

3.1.1 Database Structure

The server stores eleven relational databases linking students, staff, assignments, and grades.
The grades database stores grades and grade penalties for all assignments and students. The as-
signments database stores a list of assignments and information about them. The users database
maps Kerberos IDs to course roles for use in permissions. The teams database stores which stu-
dents are in which Design Project teams. The sections database contains information about the
organization of each recitation section, while the section assignments database maps students to
their respective sections. The identities database maps MIDS IDs to their corresponding home
directories in the MFS. The submissions database stores information about every submission for
every student or group. The recitation teams database maps student Kerberos names to their
corresponding recitations. The video vote database stores each student’s votes for the final De-
sign Project video submission. Lastly, the in progress submissions database records assignment
submissions that are currently in progress and whose outcomes need to be communicated to the
sender. Table 1 above lists these databases and the variables that they store.

3.1.2 Implementation Simplicity

The relational database structure achieves implementation simplicity due to the ease of modifying
and quickly accessing information through SQL querying. These databases are highly flexible,
well established, and simple to maintain. Although they struggle with more complex data-types,
this is likely not to be a concern with the 6.033 course. Our design only requires the system to
store integers and strings in the data fields, and any more complex data types can be stored in
the file system. As such, it makes sense to use a relational database structure to optimize our
design for storing simple data-types.

5



3.2 Identities and Access Control

BeaverCMS employs a robust user management system that spans both individuals and groups
to secure access control to the file system. The system combines MIDS with the teams database,
sections database, section assignments database, and the recitation teams database.

3.2.1 Identity Control

System users include students, student graders, recitation leaders, teaching assistants, and course
administrators. MIDS has existing identities that correspond to every Kerberos ID for individual
users. Course staff has permissions to create new MIDS identities via the create id command that
correspond to groups of students. These include Design Project teams, recitations, sections, and
the entire class. Since MIDS does not support querying for specific roles or checking if a student
belongs to a certain Design Project team or recitation, our system stores these relationships in
the databases in the central server.

3.2.2 Course Initialization

At the beginning of the course, recitation leaders, teaching assistants, and course administrators
are delegated permissions to create new Kerberos IDs using the delegate kerb creation command
in MIDS. With the start of the course, the system will create an identity that corresponds to the
entire class. After recitations and sections have been assigned from the results of a student survey
and compiled into a .csv file, this can be uploaded to the server by the Course Administrator.
The server will parse through the file, create the necessary recitation and section MIDS identities,
and create the necessary relationships between students and these groups in the databases.

Assignments can be created only by the course admin. The course admin needs to specify the
Assignment Name, Total Possible Points, Due Date, and Late Penalty. The server generates the
Assignment ID, and adds this as a row in assignmentsDB. If late submissions are not allowed at
all, then the Late Penalty can be set to zero.

3.2.3 Dynamic Assignments

If, for whatever reason, a recitation assignment needs to be switched, recitation leaders, teaching
assistants, and course administrators have Kerberos ID access to modifying the central server.
Any of the course staff can submit a request to the server to change a student from one recitation
or section to another, and the system will handle modifying the database to reflect these changes.

Similarly, when a student drops a class, staff can submit a request to the server to remove
this student from all database records. Since their Design Project team is now lacking a mem-
ber, those students must find a new third member. However, this is simply achieved through
modifying the teams database, which is checked on all accesses to Design Project team home
directories.

3.2.4 Secure Querying

Every access to the file system and every access to the central server must first pass through
MIDS. MIDS will verify the user’s Kerberos ID. Next, the central server will ensure that the
user is a member of a specific group if necessary. A simple query to the database can verify
that a recitation leader has permissions to view a file of one of their students or that the Course
Administrator has permissions to view the grades of the entire class.

6



3.2.5 Authorization Security

A requisite feature for any upgraded system for this course is a comparable level of authorization
security. One strength of the current system is that no user, student or staff, can access infor-
mation that they do not have permissions to view. This system maintains comparable levels of
authorization security as the current course infrastructure since it leverages the MIDS for iden-
tity control and all accesses to the central server databases are done only after authenticating
the Kerberos token and verifying it corresponds to a course staff member.

3.3 File Structure

This system creates a custom file system hierarchy within the MFS that distinguishes between
different submissions of the same assignment and stores staff feedback on assignments.

3.3.1 File System Hierarchy

Each Kerberos ID in our system, both individuals and groups, have corresponding home direc-
tories within the file system. An individual’s home directory provides a location for submissions
of an individual assignment such as a system critique, and Design Project team home directories
provide a location for students in the same team to submit group assignments. Upon creation of
a new identity in MIDS and the creation of a corresponding home directory, a protocol creates a
“COLLAB” directory that only that Kerberos identity can access, and a “FINAL” directory in
the home directory and grants the recitation team staff identity access. Figure 2 below illustrates
this file structure.

The “FINAL” directory stores the most recent (or user-chosen) file to be graded, while all other
submitted files exist in the main home directory. By default, newly submitted files are stored in
the “FINAL” directory, and the previous file submission for this assignment is moved to the main
directory. However, the submitting user can designate which submission is their final submission.
This action swaps that submission from their main directory with the corresponding submission
in the “FINAL” directory.

The “COLLAB” directory is accessible only by the user whose home directory it belongs to.
Clients can connect to it through MSS. A user (student or team) can upload or download files
to their “COLLAB” directory through MSS. If there are multiple individuals with access to this
Kerberos user ID (in the case of a DP team, for instance), this folder allows them to collaborate
on files and assignments. In the case of a merge conflict, where two individuals, using the same
Kerberos identity, attempt to modify the same file in the “COLLAB” directory at the same
time, since we require individuals to use MSS, the tags received will be different and the second
upload will fail.

For example, a student can access their directory (and the “COLLAB” directory) as well as the
directories of their recitation, section, Design Project team, and the entire class by choosing
on the client side which Kerberos ID they would like to use. That student’s recitation leader,
teaching assistant, WRAP instructors, and the course administrators have access to this student’s
“FINAL” directory.

3.3.2 Nomenclature

Submissions of reading questions, system critiques, Design Project Preliminary Reports, Design
Project Reports, and peer reviews to BeaverCMS are named in the formats reading question X Y,
critique X Y, DPPR Y, DPR Y, and peer review Y, respectively, where X identifies which as-
signment in the series it is and Y identifies the submission number starting at 1. A student’s
third submission of the second system critique would be named as critique 2 3.pdf.

7



When a member of the staff submits comments for a given submission, this file is stored in the
“FINAL” directory with the same name as the submission appended with comments Z where Z
keeps track of multiple graders potentially submitting multiple sets of comments. For example,
if both the WRAP Instructors and Recitation Teaching Assistant provide comments on the
student’s third submission of the second system critique, both of these comment files will exist
in the “FINAL” directory and will be named, in no particular order, critique 2 3 comments 1
and critique 2 3 comments 2.

3.3.3 Implementation Simplicity

The system prioritizes implementation simplicity here to ensure the file system is easy to develop,
maintain, and operate. This is enforced through a simple nomenclature for submitted assignment
files that distinguishes between different assignments, the number of that assignment, and the
number of that submission. This allows the system to be flexible from year to year with different
grading protocols for different assignments, as this nomenclature can be easily changed. The
hierarchy for the file system is also organized around Kerberos IDs at the highest level. This
facilitates adding and removing students from the class, which is likely to be much more of a
common occurrence than adding or removing assignments.

While this system does not scale as well due to the lack of organization between the different
types of files, we do not anticipate this to be a problem due to the limited number of assignments
in this course.

Figure 2: MFS contains a directory for each student and each team.

8



4 Networking

The following section details specific interactions between modules outlined above.

4.1 Assignment Submissions

BeaverCMS’s submission protocols are designed to optimize for reliability. This is achieved
through failing fast in the case of errors, redundancy in the central server, and sending notifica-
tions to the user.

BeaverCMS processes any assignment submission by first attempting to verify the Kerberos token
by querying MIDS and receiving the relevant Kerberos name in case of success. BeaverCMS then
ensures that the Kerberos name is in usersDB. If either of these authentication steps fail, then
the system fails and returns an error to the client stating that the provided authentication token
is invalid. Failing silently for user submissions should be avoided to ensure that the student
knows that they must re-attempt the submission.

4.1.1 Notifications

For all of the submissions described below, as soon as the server receives the submission request,
it adds it to inProgressSubmissionsDB, and as soon as the server completes the submission
request, it removes it from the database. There will be a process on the server that constantly
scans this database, and in the case that a submission is older than 10 minutes (and hasn’t been
completed), it will be removed, as soon as a failure notification is emailed to the user. If the
server has poor internet connection at the time where it realizes a failed submission, which is
very possible as poor network conditions can lead to failed submissions, the database entry is
not removed until the server is able to send the notification email.

In general, given a Kerberos ID, the server can email a notification the @mit.edu email associated
with that Kerberos ID. The notification will include the assignment name, submission time, and
whether or not it was successful.

4.1.2 MFS Submissions

Certain assignments, such as system critiques, are required to be submitted from the client
through the server and stored in MFS in the file hierarchy described above. A submission
request consists of a file, an assignment name, a timestamp, and a Kerberos token. The server
stores a submission queue. It exposes a submission function, which takes in a submission request,
adds the current timestamp in the timestamp field, and appends it to the end of the submission
queue. The server has 100 internal threads that watch the submission queue, and whenever the
queue is non-empty, picks the submission request at the front of the queue and processes it. We
talk about this aspect of parallel uploading in more detail in Section 4.1.6.

Processing a submission request involves verifying the Kerberos token as described above, get-
ting the Kerberos ID of the submitter, using assignmentsDB to verify the assignment name
and due date, updating submissionsDB to reflect the newly received submission, connecting to
MFS and using the write file function to upload the file in the “FINAL” submission folder for
this assignment of the Kerberos ID submitting the assignment, and moving any file that was
previously in the “FINAL” directory to the student’s general submission directory.

4.1.3 Video Submissions

Our system supports the functionality for Design Project teams to submit 5 to 8 minute videos
and view other teams’ video submissions. Since these files are significantly larger (approx. 100

9



MB) than other files, we implement submission differently in order to maximize reliability.

Videos are stored in the directory that is visible to all 6.033 users (i.e the home directory of
the whole class identity) and named with their team Kerberos name. Teams must use MSS to
connect to MFS in order to upload their video. Specifically, they use the sync upload function to
upload their video to the class folder. When a student or team would like to view another team’s
video, they can run the sync download function through MSS. We choose to use MSS instead
of the MFS submission process for video submissions so that reads and writes are synchronized
and to allow upload and download processes to be terminated, using the kill function, if they
take too long.

To allow for speedy cancellations, video files are broken into 1 MB chunks sequentially. A label
is appended to the end of the file name, where the filename of the ith chunk is appended with

i. When the client sends these chunks using the sync upload function, it waits for completion of
all of them, and then sends a notification to the server indicating the video has been submitted
(the server exposes a function to do this).

Upon downloading videos, the client downloads all the chunks corresponding to that video team
name, and collates the files in the order of the suffixes.

4.1.4 Peer Review

Our system also supports peer reviews. Upon creation of the peer review assignment, BeaverCMS
creates a peer review folder in the home directory of the whole class identity. BeaverCMS copies
all the DP teams’ DPPRs into this folder, setting the permissions such that each DPPR can be
viewed only by its authors. The server exposes a function that allows for a DP team (using their
team identity) to add another Kerberos ID (corresponding to the team reviewing them) as a peer
reviewer. This function verifies the team’s Kerberos token and then changes the permissions on
the copy of that team’s DPPR in the peer review folder to include the reviewing team. We
then provide a server function where a team can download their peer reviewee’s DPPR. The
function simply scans the peer review folder in MFS and downloads and returns the only file it
has permission to view (except their own DPPR).

We expose server functions for submitting and viewing the peer reviews themselves as well. The
submit function takes in the peer reviewee’s Kerberos name and the peer review file (and verifies
the Kerberos token of the peer reviewer) and writes this file to the peer review folder in MFS.
The function grants the peer reviewee (and no one else) permission to view the peer review file.
The viewing function simply scans the peer review folder and returns the only submitted peer
review file which this Kerberos token has access to.

4.1.5 Gradescope Integration

Submitting assignments through Gradescope is handled by Gradescope – BeaverCMS simply
needs to pull the grades from Gradescope, which we discuss later.

4.1.6 Parallel Uploads

Our submission queue can be as large as necessary – so if all 500 students submit at the exact
same time, the queue will have size 500. Putting a new submission request on the queue is a
relatively quick process. Putting tasks on a queue and picking from them allows for a more
orderly and resourceful approach to parallelizing uploads to the extent possible.

We choose to have 100 different submission processes running simultaneously since we have
10 cores and we’d like to avoid resource contention as much as possible while ensuring that
submissions are still relatively fast during bottleneck times (i.e 2 minutes before an assignment

10



is due). If we assume 90% of students will submit in the 2 minutes before the deadline, we have
an average case of 3 submissions every second, so we should be able to ideally support a worst
case of 10 submissions every second. As we discuss in Section 5, the average case file upload
is 10 seconds, so 100 threads would allow us to support 10 submission every second. As more
students are added to the class, we will want to devote more threads to the uploading in order
to still be able to support these worst case scenarios.

Allowing many concurrent submission processes to run at the same time accelerates the upload
process and ultimately improves the reliability of the system. If a file slows down one submission
process or if there is high traffic due to many students attempting to upload at once, this system
has built-in redundancy to ensure that a student’s valid submission will be recorded and stored.
As we talk about in our evaluation section, using this many processes gives us a sufficiently fast
expected upload time.

4.1.7 Killing Uploads

In the case of a brown-out, the client automatically kills file uploads in process. The client can
also voluntarily kill file uploads if desired.

For uploads that are in the submission queue, their requests are simply deleted from the queue.
Once a server process is processing the upload, however, the kill transaction becomes more
nuanced. In the case of non-video file uploads, if it’s already left the submission queue, we
ignore the kill and proceed with the upload anyways (so it’s too late to kill a transaction at that
point). With assignment file uploads, a student can always submit a new file on top of this one,
mark it final, and it’s essentially equivalent to killing the original file upload anyways.

In the case of video uploads, we currently upload them to MFS through MSS. If the video
upload has already begun, then we can use the MSS kill function to kill the current video upload
prematurely. Videos are uploaded via chunks, so the kill signal is sent in between chunks. This
way if a user cancels their upload, the file transfer is killed before the entire file is uploaded.
Then, the client can also delete all chunks that were already uploaded to MFS.

Figure 3: Killing Uploads

11



4.1.8 Reliability

Our submission protocols prioritize system reliability, so that we can provide as strong a guar-
antee as possible that when a student thinks a file is submitted, it actually is. To this extent,
we provide a notification system where upon every successful file upload, the student receives an
email notifying them of that. Whenever a submission process finishes processing a submission
request, it sends an automatic server-generated email to the Kerberos ID of the submitter noti-
fying them that their submission was successful. Users should not consider their files successfully
uploaded until they receive that confirmation email.

To further bolster reliability of the system, BeaverCMS also provides functionality for a client to
verify whether an upload was successful. If a client sends a verification request with a Kerberos
ID and a file name, BeaverCMS can authenticate the Kerberos ID and check in the corresponding
directory if a file with the given file name exists. BeaverCMS then return a true/false result
to the user. Figure 4 illustrates the work flow of submitting a file and periodically checking to
ensure receipt.

Figure 4: When a file is submitted, it is placed in a queue. The client then periodically queries
the server to determine the status of their upload.

4.2 Grading Assignments

4.2.1 Staff Grading

In order for a staff member to grade assignments on the MFS, they must pull the assignments
from the file system, grade them and write comments in a file, and query the server to submit
the grade and file with comments.

When a recitation team staff member wants to download in bulk all of the submissions from
their recitation team for a given assignment, they can send a request to BeaverCMS with the
assignment name. BeaverCMS can query recitationTeamsDB to receive a list of student Kerberos
names and query MFS using download file to extract and return the desired files from the
“FINAL” directories of these students. If this staff member only wants to download a specific
student’s submission for one assignment, they can query BeaverCMS with the student’s Kerberos

12



name and assignment name, and BeaverCMS will again query MFS to extract and return the
desired file. Both of these methods of extracting submitted assignments from the file system
abstract away almost all of the work from the staff member, achieving greater simplicity than
the current system.

Upon grading the received submission, the staff member will send BeaverCMS the grade and/or
comments along with the student’s Kerberos name and assignment name. BeaverCMS names
the comments file accordingly and adds it to the student’s or team’s “FINAL” directory and
adds the grade to the gradesDB database.

For bulk grading submissions, BeaverCMS allows the staff member to submit a CSV contain-
ing each student’s Kerberos name, their grade, and a text field containing their comments.
BeaverCMS has an internal function that can parse this CSV and process each grading request
individually, as described above.

In order for the publication function to work and for all students to see their grades at the
same time, the grades are initially designated as unpublished and the client will not display
those grades to the student. In order to publish the grades, the staff member runs the publish
function along with the name of the assignment. This will update the status of the grades such
that the client allows the students to view their grades.

If there are multiple graders grading the same submission by the same student for the same
assignment, the system treats this as multiple grading events which corresponds to multiple
entries in the gradesDB database.

For certain assignments, recitation team staff can manually enter the grades for each student or
team. In this case, the recitation team staff can send such a request to BeaverCMS with either a
single student or team Kerberos and a grade, or a dictionary mapping Kerberos names to grades.
BeaverCMS will authenticate the staff member and ensure the student(s) are in the recitation
team, and then add these values to the gradesDB database. In these cases, BeaverCMS will also
send an email to the student whose grade was manually changed, notifying them of the change.

4.2.2 Video Voting

The server exposes a function to vote for videos, whereby a student can submit an ordered list
of the Kerberos names of the five videos that they would like to vote for. The function verifies
the Kerberos token (and that it corresponds to a student) and adds the Kerberos names to the
videoVoteDB relational database. Upon the voting period ending, a quick SQL query allows
BeaverCMS to determine the winning videos.

4.2.3 Grade Reports

We expose a server function that may be used by the course admin and all recitation team staff
and returns a CSV containing an up-to-date grade report of all students. If the Kerberos token
is from course admin’s Kerberos ID, then it returns a grade report of all students, and if it’s a
recitation team staff member, then it returns a grade report of all students in that recitation
team. We also allow the user to specify a specific student’s Kerberos ID, and they will only
receive the grade report for that student. Finally, the user can also specify a list of assignment
names that they would like to get a grade report for (the default is all assignments). This function
works by scraping the gradesDB relational database and formatting it in a CSV format. This
function can be used by the course admin at the end of the semester for the grades meeting, and
it can also be used by recitation team staff who want to check on students’ performance in the
middle of the course.

13



4.2.4 Grade Penalties

In the current implementation, deadlines and grading penalties are handled manually. Beaver-
CMS automates the late penalty system, while allowing for staff to manually change the penalty
in extenuating circumstances. Upon a submission to the MFS, BeaverCMS queries assign-
mentsDB and compares the listed due date with the current date. If this assignment is late, it
marks the number of hours late in submissionDB and uses the late penalty rate in assignmentsDB
to compute a late penalty multiplier and puts this in gradesDB.

Recitation staff members will have access to a server function to change the late penalty multiplier
in gradesDB, to be used in special circumstances (S3 note excusing lateness, submission error,
TA excuse, etc.).

4.2.5 Gradescope Integration

Pulling grades from Gradescope is the only case where BeaverCMS must interact with a third-
party system. As such, this protocol is made as simple as possible to avoid over-reliance on
third-party support.

To pull grades from Gradescope, calls to the pull gradescope grades() function are made period-
ically up until the regrade period is over. The result is stored as a CSV data structure and then
parsed into inputs for gradesDB.

Grades are pulled every minute in the current system. A frequency of once per minute is chosen
to keep the BeaverCMS grades almost perfectly in sync with Gradescope. Since the cost of
running pull gradescope grades() is under a minute (justified in Section 5), it suffices to have
a single process responsible for pulling grades every minute. Syncing more frequently might
require multiple processes, which would be an unnecessary use of resources, and syncing less
frequently might lead to BeaverCMS and Gradescope being noticeably out of sync. Since the
resource use is limited anyways, we choose to optimize for consistency between BeaverCMS and
Gradescope.

4.2.6 User Simplicity

Throughout the staff grading workflow, we prioritize user simplicity. The major reason for this is
that there are often few staff responsible for many students and many grades – a single recitation
instructor might have more than 36 students to grade for every assignment. As a result, even
slight inefficiencies in usability and the user experience multiply out to be major wastes of time
on the part of the course staff. For this reason, we implement an automated late assignment
policy, automated syncing between Gradescope and BeaverCMS, and automated production of
Grade Reports. Moreover, the staff grading workflow is designed so that staff members can
download assignments in bulk for their sections, and submit grades/comments either one at a
time or in a bulk format. We hope that these design choices, while they tradeoff implementation
simplicity, make the user experience more seamless and efficient.

Where possible, we do preserve the flexibility of the system, giving staff members the ability to
override the automated processes (in late policy and gradesDB), preserving the strengths of the
current system.

14



5 Evaluation

5.1 Quantitative Evaluation

5.1.1 Communication Overhead

Each query has a 12KB overhead due to the Kerberos verification [1]. For file uploads the
components to the upload are:

• Assignment name (20 characters, 20 bytes)

• Course name (10 characters, 10 bytes)

• Home directory (Max path is 260 characters, 260 bytes)

• date (8 bytes)

The upload components add up to <1KB and the Kerberos authentication is 12KB. Overall,
there is a ∼13KB constant overhead and a 2x overhead since we need to send the file to server
and then server needs to send to MFS.

5.1.2 Assignment Uploads

From the system specifications, it is known that:

• MIT backbone network runs at 100 GB/s

• The connection outside MIT is 10 GB/s

• Each wired Ethernet link runs at a maximum of 1 GB/s

• Each wireless link can support up to 600 MB/s

• Each edge device can be supported at 500 MB/s

For the purpose of this measurement, it is assumed that 10 MB/s is available to the user as they
may have varying network conditions. The bottleneck in the system is the computer upload
speed unless there is a brownout in the system.

Average Case

In the average case the following is assumed:

• There is 500 MB/s for the network

• The average video size is 100 MB

• MIT runs at 10 GB/s.

From this we can determine that the average time for a file upload is:

100MB ∗ 1

10MB/s
= 10s (1)

Therefore, the average file upload time is 10 seconds.

Additional Case: 400 Simultaneous Submissions

To ensure that our system works in even the worst case scenario, it is able to handle 400
simultaneous submissions in the average file upload case.
We assume the same conditions in the previous case:

15



• There is 500 MB/s for the network

• The average video size is 100 MB

• MIT runs at 10 GB/s.

Even if 1,000 students upload at the same time, the network is able to handle the traffic since:

10MB/s ∗ 1000 < 10GB/s (2)

Worst Case

The worst case upload time is the maximum upload time that the server allows before a upload
fails. We set this time to be 10 minutes in our system. This supports the following worst case
file upload scenario:

• 0.84 MB/s DSL connection [2]

• 500 MB Video File

We choose 10 minutes at the upper bound on upload times because:

500MB ∗ 1

0.84MB/s
= 600s = 10minutes (3)

If a file takes longer than 10 minutes to upload, then the upload fails.

5.1.3 Gradescope Grades

The system pulls grades every minute.

In the average case, it takes a minute from a grade on Gradescope to be transferred to the server.
In the worst case, a grade is uploaded to Gradescope right before a brown-out. In that case, the
upper bound on a brown-out time is 30 minutes. This means that in the worst case, it takes 31
minutes for a grade to be transferred to the server.

5.1.4 Server Data Storage

To determine how much data is put on the storage, we assume the following:

• 9 databases, per our design

• 240 GB SSD, per the project specification

• 400 students, per the design specification

• 20 assignments per semester

• 18 sections and recitation teams

• Each row take up at most 1KB

With the previous assumptions, we find that the size of each relational database is as follows:

By summing up the size of each database, we find that each semester we have approximately
17,390 KB of relational database data. However, the roughly 130 DP teams each produce a 100
MB video, along with about 40 MB in PDF files for the assignments in the class, which takes
up 18 GB. It’s easy to see the file size is the dominant factor over the relational database.

By this estimate, we find that the current system can handle a 10X increase in data before
overloading the SSD and Main Memory.

16



Database Size of Database
gradesDB #assignments*#students*1 KB = 8000 KB
assignmentsDB #assignments * 1 KB = 20 KB
usersDB #students * 1 KB = 400 KB
teamsDb #teams = #students/2 = 134 KB
sectionsDB #sections * 1 KB = 18 KB
sectionAssignmentsDB #students*1 KB = 400 KB
identitiesDB #students*1 KB = 400 KB
submissionsDB #assignments*#students = 8000 KB
recitationTeamsDB #sections = 18 KB

Table 2: Estimate of Each Database Size

5.1.5 Scaling

The two major bottlenecks to our system scaling are server storage space and handling the
average case where a large fraction of students upload videos at the same time. Both of them
scale linearly with the number of students. Given our calculations above, we can support roughly
10x the number of students before our server runs out of memory. In terms of the average case
video upload time, we can support 10x the number of students if we allow our video uploads
to take an average of 2-3 minutes each, which isn’t entirely unreasonable, especially considering
the email notification system we have in place.

We could easily handle doubling the number of students in 6.033, however, we wouldn’t be able
to use this system for every class in EECS without an increase to our server memory.

5.1.6 Grade Downloads

There are #assignments*#students = 20*400 = 8000 grades in the system. Taking the same
assumptions from 5.1.4, all the grades take up at most 8000 KB.

It can be assumed that the course lecturer has a standard internet connection. As mentioned
in 5.1.2, that speed is 10Mb/s. When the course lecturer runs the download grades function, it
takes 7.8 seconds to download all of the grades. That comes from the following:

8000KB ∗ 1MB

1024KB
∗ 1s

10MB
= 0.78s (4)

5.1.7 File Transfer Kills

As mentioned in section 4, when a file is uploaded, it is split into 1Mb chunks as it is sent over
the network. Assuming an average network speed of 10Mb/s, a file transfer can be cancelled
within 0.1s. Even with a slow network connection of 1Mb/s, a file transfer can be cancelled
within 1s.

For a user to be notified that the transfer was killed, the user needs to receive a cancellation
confirmation from the server. The server sends out the confirmations via email. The standard
time for an email delivery is around 5 seconds. The expected notification time is 5 seconds for
a transfer kill.

5.1.8 Student Account Creation

In order to estimate the time it takes to create all student accounts, the following assumption
are taken into account:

• 400 students, per the design specification

17



• 1 second to create a Kerberos ID

• 1 second to create a directory in MFS

The bulk of the computation time is in creating the Kerberos IDs through MIDS (for DP teams,
recitation teams... etc) and creating the home directories in MFS. Initializing the relational
databases should be very fast. With the assumptions above, this takes about 13 minutes.

5.2 Qualitative Measurements

5.2.1 Usability

Usability for both students and staff members was a key factor in designing this system, as this
is the area in which current infrastructure most lacks.

Student

BeaverCMS offers some functionality that improves student usability from the current course
infrastructure. The system has built-in automated functionality for submitting as a group and
accessing group files. In this system, all members of a Design Project group can see submitted
files and feedback. The file upload notification system allows students to receive email confir-
mations about the success of a file upload. This is beneficial in the case of network outages
prevent a student’s assignment from being submitted properly. Additionally, grades are pulled
every minute from Gradescope to minimize lag time for a student’s grades to be updated in the
system.

Staff

Course staff will also find the system significantly more usable than the current system as it
was designed to minimize the number of manual tasks necessary. At the beginning of the course,
the system automatically populates the database with students, recitations, and sections. Per-
missions are granted to course staff to make any changes to a specific student’s recitation or
section, and the server handles all changes in student or group permissions in the database
automatically. As a function of the database structure, system also provides staff the ability
to easily pull grades from all students in a grade report at the end of the semester to submit
to the registrar. Additionally, where grade penalties are currently manually assigned by course
staff, BeaverCMS automatically enforced grade penalties and gives staff permissions to manually
adjust them in certain exceptional circumstances.

The grades populate every minute, which allows for user to have a more accurate snapshot of
their grades. The interval of a minute was chosen such that the user would have an optimal user
experience.

File cancellations are all very speedy. It takes less than 0.1 seconds to cancel a file. The
notification speed of 5 minutes (the time it takes to send an email) could be more optimal, but
in this case reliability was chosen as a higher priority for the user. The email notification is still
the most reliable method to deliver a notification.

The file transfer time out interval of 10 minutes is also an optimal length for the user. The time
was deliberately chosen to be as short as necessary to allow the user to be notified as soon as
possible in the event of a failure. This quick feedback is especially important when it is close
to the project deadline. The time out window is no shorter than 10 minutes because then the
system becomes less usable as large files and/or slow connections could trigger upload failures.

18



5.2.2 Flexibility

The scaling concerns of our system have been discussed thoroughly, so we think the biggest bot-
tlenecks to flexibility are the ability to create isolated instances of courses and support different
assignment or grading flows. Our system is not specific to any particular assignment or assign-
ment structure, and we support general creation of assignments, submissions, and late penalties.
However, some classes may desire completely different submission or grading workflows, which
our system does not provide at the moment. Some classes may want to integrate third party
software beyond Gradescope, which we do not currently support. We also would need to modify
our relational database structure to account for multiple isolated classes. Our file hierarchy and
home directory model, however, can support multiple classes.

Because of the general nature of the file hierarchy and upload processes, we don’t anticipate any
issues with different file formats.

6 Conclusion

Our proposed system accomplishes the goals set out by the 6.033 staff: support of forming
teams, sharing works in progress, submitting group assignments, providing a uniform place to
view grades, and allowing for additional video upload functionality. Built with simplicity in mind,
our file system uses an intuitive naming structure, and our grading process automates much of
the work on behalf of the course staff. Our system achieves a comparable level of security as
the current implementation through integration with MIDS and proper access controls on our
databases. To ensure reliability in our system, our central server supports parallel submission
processes and is fault tolerant in the case of a brown-out.

7 Author Contribution

All of us worked on creating the high level design. Nyle Sykes primarily worked on the file
hierarchy design. Fiona Zhang worked on the grade file system and the diagrams. Additionally,
she led efforts to generate estimates for the evaluation section. Ashwath Thirumalai primarily
worked on the networking design. All of us had a role in writing each section of the report and
revising based on feedback.

8 Acknowledgments

A special thanks to Olivia Brode-Rogers and Jessie Stickgold-Sarah for their feedback. We would
also like to thank Katrina LaCurts and the course staff for an instructive and engaging semester.

References

[1] ShaneC33. MaxTokenSize and Kerberos Token Bloat. Just Blog’n, blogs.technet.microsoft.
com/shanecothran/2010/07/16/maxtokensize-and-kerberos-token-bloat/.

[2] The Average DSL Connection Speed. Techwalla, www.techwalla.com/articles/the-average-
dsl-connection-speed.

19


	Introduction
	Challenges

	System Overview
	Design
	Central Server and Data Structures
	Identities and Access Control
	File Structure

	Networking
	Assignment Submissions
	Grading Assignments

	Evaluation
	Quantitative Evaluation
	Qualitative Measurements

	Conclusion
	Author Contribution
	Acknowledgments

