
MIT Unified Submission and Grading
System (MUGS)

Shannon Hwang, Kate Nelson, Jason Paulos

1. Introduction 2

2. System Overview 3

3. Roles 4
3.1 Users 4
3.2 Permissions 5

4. Filesystem 5

5. Network Protocol 7
5.1 Packet Acknowledgement 7
5.2 Graceful Kill 7

6. Use Cases 8
6.1 Students 8

6.1.1 Submissions 8
6.1.2 Viewing Grades 8
6.1.3 Voting 8

6.2 Teams 9
6.2.1 Submissions and Grades 9
6.2.2 Forming Teams 9
6.2.3 Coordinating Files 10
6.2.4 Sharing Work With Other Teams 10

6.3 Staff 10
6.3.1 Assigning Grades 10
6.3.2 Publicizing Grades 11
6.3.3 Viewing Grades 11
6.3.4 Gradescope 11

7. Conclusion 11

1

1. Introduction
6.033 is an MIT class that covers the fundamentals of computer system engineering and design,
yet its grading system is severely lacking. Currently, several key system functionalities are
haphazardly split between a submission site, Gradescope, and staff personal machines. 6.033’s
current system also fails keep track of files before submission, or facilitate group collaboration or
submission for the team assignments that make up nearly half of the course.

We present an updated system design, the MIT Unified Submission and Grading System
(MUGS), that solves these problems while prioritizing scalability, simplicity, reliability, and
security. We achieve scalability by defining abstract elements such as users, groups, and
assignment directories that can be easily adjusted to the course structure of other classes. We
achieve simplicity by building these elements into the file system structure, on which we base
system security and functionalities. We achieve reliability – critical for both students and staff in
a grading system – by keeping uniquely-named records of all files and submissions and
ensuring reliable file transmission across potentially unreliable networks. We achieve security by
defining a hierarchy of user roles and permissions, ensuring that files are only accessible by the
correct users. Scalability, simplicity, reliability, and security are closely intertwined, allowing our
design decisions to intentionally align with all four of our goals.

2. System Overview
Our system consists of individual components that communicate with each other to execute
varied user requests, as shown in Figure 1.

The MUGS Server is our system’s central hub. It receives users’ requests from the front-end,
determines which actions to take, and executes these actions on the MIT File System. All of our
system’s custom logic resides here.

The MIT File System (MFS) stores all persistent information in our system. This includes user
information, assignment submissions, grades, and more. MFS’ permission system contributes to
system security by determining which actions users can take.

The MUGS Front-end is the primary interface where users interact with our system. The
front-end is responsible for passing user authentication information securely to the MIT ID
service (MIDS), which authenticates users by granting them a Kerberos ID. This Kerberos ID is
included in requests to the MUGS Server to identify users and their requests. The front-end is
also responsible for uploading and downloading files to an instance of MFS using the MIT Sync
Service (MSS).

2

Gradescope interacts with both end users and the MUGS Server. Students submit assignments
to Gradescope, the assignments are graded, and the MUGS Server synchronizes Gradescope
grades with MFS.

Figure 1:​ An overview of the different components and interactions in MUGS. Users interface with a front-end, which
handles routing requests to the MIT ID Service, MIT Sync Service, and MUGS Server. The MUGS Server and MIT
Sync Service also share access to the MIT File System, which stores the majority of information about the course.
Gradescope has interactions with both the users and MUGS Server.

3. Roles
We use Kerberos IDs to represent every student and staff member. In order to simply implement
security policies, we also assign a group ID to various groupings that arise naturally in the
course such as recitations, tutorials, and teams, organized using a hierarchical model that
reflects the various levels of permissions that the groups naturally have. With group and user
IDs, controlling security and user access to various files and directories simply involves setting
permissions in the file system corresponding to different user IDs. Figure 2 shows an example
hierarchy of users and groups in the course. Notice that members of a group can be specific
users as well members of other groups.

3

Figure 2:​ The hierarchy of users and groups in MUGS, shown with specific users as an example. 6.033 is the
common ancestor of all roles, splitting users into the students and staff groups.

3.1 Users
A ​role​ in our system can be either an individual user or a group. Every role has a unique
Kerberos, which is essential for identification in our system. The ​parents​ of a role are all of the
groups to which it immediately belongs. Note that 6.033 is the only role that does not have a
parent, and individual students have more than one parent. The ​family​ of a role are all of the
groups to which it belongs at any depth, and itself. For example, in Figure 2, the parents of
jas0n​ are ​rec_2​ and ​team_1​, and the family of ​jas0n​ is ​jas0n​, ​rec_2​, ​team_1​, ​tut_1​,
students​, and ​6.033​.

3.2 Permissions
An individual can use their Kerberos to perform actions on behalf of any members of their
family. This functionality is implemented by examining all Kerberos belonging to the user’s
family in a well-ordered manner. The system will attempt to use each Kerberos to complete the
action until either it succeeds in finding a Kerberos that can perform the action, or every family
member’s Kerberos is tried (in which case the action fails). The system examines parent links in
each role’s home directory (described in further detail in Section 4) to find a role’s parents and
compile its family members.

We chose to sacrifice simplicity for scalability in designing the permission system because we
believe the ability to represent an arbitrarily complex grouping system with permission lookup
allows us to abstract away much of the complexity from the rest of our system. The permission

4

lookup procedure actually results in increased overall security simplicity, since other
components are not responsible for verifying the many relationships between users and groups.

4. Filesystem

Figure 3:​ A subsection of the MUGS filesystem. The directory ​kerb​ contains the home directories of all users.
Symbolic links are used throughout the file system to relate different entities and to ensure information is accessible
to multiple users in well-defined locations.

Our filesystem structure follows our hierarchical group model to similarly support scalability. The
filesystem enforces roles, relationships, and permissions by defining links between directories
that facilitate access for students, teams, and staff.

The filesystem’s ​/kerb​ directory contains UNIX-style home directories for all users and groups.
Individual home directories are linked to another directory within ​/students​ or ​/staff​ as
appropriate. For example, ​/kerb/jas0n​ and ​/students/jas0n​ both represent the home
directory for the student ​jas0n​. We also define parent relationships through links within home
directories. For example, ​/kerb/jas0n/parents​ contains links to ​jas0n​’s group folders:
/kerb/jas0n/parents/rec_2​ links to ​/kerb/rec_2​ and
/kerb/jas0n/parents/team_1​ links to ​/kerb/team_1​. For security purposes, we ensure
that only course staff can modify or create any parent links.

5

Figure 4:​ Our linking scheme is also used to coordinate files and submissions within teams. We create a link
between a user’s team folder and the high level team directory so that all team members can access the same files.

Team directories are linked similarly, as illustrated in Figure 4. Each student’s home directory
has a link to their team directory, in which they can share files with their team.

At the beginning of the term, staff will configure directories for assignments and roles as outlined
in Figure 3. We leave this as a manual process so that the roles and directories can be simply
scaled to other classes. Since we envision that each staff member will create directories for
groups and users directly under them in the user hierarchy (for example, the course
administrative TA creates directories for recitation TAs, who create directories for their
recitations and corresponding students, and so on), thus dividing directory creation efficiently,
we believe manual directory creation does not significantly hinder system utility.

For reliability, we keep copies of all submitted files and allow staff to grade any previous
submission. We differentiate submissions using by naming files uniquely based on version
number, submitting student, and timestamps (i.e. submission1_jas0n, submission2_katenels,
etc.).

We also utilize the MIT Sync Service (MSS) and MIT Lock Service (MLS) when interfacing with
the filesystem to prevent any concurrent access errors. MSS allows individual users to upload
files from their machine to any of their directories, as well as download any accessible files or
directories to their machine. We use MLS to handle concurrent accesses to files in MFS by
blocking users from reading or writing to files that other users are writing to.

5. Network Protocol
Since we assume that users of the system are heavily invested in ensuring that their files are
transmitted correctly, our network prioritizes reliability by following a TCP-like packet
acknowledgement protocol when transmitting uploaded or downloaded files. For additional

6

reliability and fault tolerance, the network has an additional procedure for gracefully closing
connections in the event of user cancelation of file uploads or downloads.

5.1 Packet Acknowledgement
Like in TCP, when users upload or download files from MUGS, the file is transmitted as a
numbered sequence of data packets (1, 2, 3, ...). When the receiver gets a packet, it sends a
numbered acknowledgement packet (​ack​) back confirming receipt of all packets up to the ack
number. If the sender does not receive an ack for a transmitted packet ​p​ within a given time
period, it retransmits ​p​ after a timeout proportional to the time it takes packets to make a round
trip between sender and receiver. For reliability, the receiver maintains a buffer so it can order
the packets it gets correctly, and keeps track of the last packet it has received to avoid sending
duplicate acks.

The ack system imposes some overhead on the system by increasing the number of transmitted
packets, but we believe that any performance or simplicity decrease from extra ack packets is
worth the increased file transfer reliability.

5.2 Graceful Kill
Because networks are prone to “brownouts” and periods of variable latency and bandwidth, we
anticipate that users will need to be able to cancel file uploads or downloads while they are in
progress. In order to ensure that both MUGS and the user can reliably verify that a file transfer
has been cancelled, we implement the following ​graceful​ ​kill​ procedure:

1. The user sends a packet with a “kill” header (retransmitting if necessary).

2. MUGS receives the “kill” packet and stops accepting packets from the user (if the user
was uploading) or transmitting packets to the user (if the user was downloading).

3. MUGS sends a “kill ack” packet.

4. The user receives the “kill ack” packet and closes their connection.

6. Use Cases

6.1 Students

6.1.1 Submissions

Students have directories associated with each assignment, such as
/students/jas0n/assignments/critique1​, that contain assignment instructions and

7

files​ and ​submissions​ subdirectories. Students may upload intermediate work into ​files​.
When a student marks a file in ​files​ for submission, MUGS creates a link to that file in
submissions​. A student can submit and resubmit assignments as many times as they wish;
we maintain a history of all submissions. Only the ​submissions​ folder is linked to the
appropriate staff folders (e.g. the student’s TA’s folder) for grading.

6.1.2 Viewing Grades

TAs upload grades and comments into a separate folder (e.g.
/tas/ddhir/critique1/jas0n​/). Each student assignment directory also contains a
grades​ folder. Once grade release is approved by staff, MUGS creates a link between the TA’s
grade file and the student’s ​grades​ folder so students can view their grades.

6.1.3 Voting

Our design accommodates special assignments in which students submit ballots ranking videos
created by other project teams. When students submit ballots, the system can screen ballots for
possible voting abuses (such as voting for the same team twice, submitting multiple ballots, etc.)
and tally total vote counts in a file located in an appropriate staff member’s folder.

6.2 Teams
One of 6.033’s core components is the team-based final design project which students complete
in teams of three. Teams must share files, turn in group submissions, be graded as a group,
and be able to see and vote on files from other teams. Our design enables secure, simple, and
scalable implementation of team-based functionalities that are not supported by 6.033’s current
grading system.

6.2.1 Submissions and Grades

Since each team has their own team Kerberos, team file uploads and assignment submissions
follow the functionality described for students in Section 6.1 (now using a shared folder like
/teams/teamKerb/assignments/DPPR/​). Similarly, viewing grades and comments as a
team closely follows the functionalities described for students, except for a given grade,
students now reference a grade file shared among members of the team in a folder like
teamKerb/assignments/DPPR/grades/​.

6.2.2 Forming Teams

Teams must be composed of students attending the same tutorial; thus, team formation
naturally takes place in a student’s tutorial folder, which is linked to their MUGS home folder.
Since all students in the tutorial have access to the tutorial folder, the tutorial TA can use it to

8

coordinate team formation and create team directories as subdirectories of the tutorial directory,
setting permissions and creating links to student home directories as necessary.

Our approach to team formation necessitates some work and potential for fault on the TA’s part;
however, we believe this sacrifice is reasonable because teams are small and there are only
around 5 or 6 teams per tutorial, while this procedure maintains the simplicity of the system and
is general enough to scale to arbitrary groupings in other classes.

6.2.3 Coordinating Files

Team assignment directories (e.g. ​teamKerb/assignments/DPPR/​) are accessible by all
team members, who can use the directory’s files to collaborate on assignments. For reliability,
MUGS uniquely names each uploaded file so that users can not silently overwrite other users’
files.

Through naming, the system can keep track of which user uploaded the most recent submission
for a given assignment and display that information when students try to submit a given team
assignment. Though this approach sacrifices a bit of simplicity on the system’s part, it greatly
increases reliability as it prevents team members from unknowingly overwriting other members’
submissions.

6.2.4 Sharing Work With Other Teams

Two team assignments – a report and video – need to be viewed by other teams. This is made
possible by linking the submissions for these assignments to read-only folders within
/kerb/6.033​, which everyone can access. This linking process can be initiated by the course
lecturer once all teams have submitted the appropriate assignment.

6.3 Staff
Course staff are responsible for grading student submissions, publishing grades for
assignments, and monitoring each student’s performance. Our filesystem makes these actions
simple to support.

6.3.1 Assigning Grades

For reliability, our filesystem maintains separate grade files for each party responsible for
grading or commenting on an assignment. Each party simply submits their evaluation to MUGS,
and our system creates the appropriate grade file without any risk of overwriting grades given by
other parties. Additionally, our system makes no assumptions about how to penalize students
for late submissions. This allows graders to manually determine late penalties on a case by
case basis, which keeps our system simple, flexible to individual circumstances, and scalable to
different classes.

9

6.3.2 Publicizing Grades

Staff-uploaded grades are initially inaccessible to students. The course instructor must manually
initiate the publication process, which links all grade files to their appropriate student
assignment directories while ensuring that each student has read-only access to their grade
files. The system then sends an email to all students notifying them that their grades have been
released.

6.3.3 Viewing Grades

Staff can also generate a report of individual student grades. This report can be filtered in a few
different ways, all of which are easily supported by our filesystem through the use of the
wildcard (​*​) search symbol. For example, recitation teams can view grades of their students for
individual assignments by the system collecting all grades matching a path such as
/kerb/rec_1/students/*/grades/critique1​. The course instructor can similarly collect
all students’ grades for all assignments by the system searching the path
/students/*/grades/*​.

6.3.4 Gradescope

In order to maintain records of assignments submitted through Gradescope, the MUGS Server
performs a sync operation using Gradescope’s API at the same time every day. If there has
been a change in Gradescope’s set of grades in the last 24 hours, MUGS pulls the set of all
Gradescope grades, compares it to grades in MFS, and modifies any differing MFS grade files
to reflect the grades and comments provided by Gradescope. We believe that a propagation
time of at most 24 hours between Gradescope and MUGS is an acceptable trade off for the
added simplicity of only synchronizing once per day.

7. Conclusion
MUGS uses Kerberos IDs and a corresponding hierarchical filesystem to enable 6.033 students
and staff to collaborate on, submit, and grade a variety of assignments. MUGS is designed to
prioritize four interwoven design goals: simplicity, scalability, reliability, and security. The
simplicity of assigning abstract users to real-world analogues (staff members, students, and
teams) and directories to real-world groupings (recitations, tutorials, etc.) ensures that security is
also simple to implement by setting file and directory permissions granted to different users to
reflect real-world privileges. In addition, our system prioritizes reliability and simplicity by simply
tracking file history through uniquely-named copies of all uploaded files, and utilizing a simple
ack system when transmitting files over unreliable network. Our current design prioritizes
simplicity and reliability over performance, which may impact scalability in terms of class size
(and the number of files that can be uploaded for a class). However, we believe that our design

10

can handle most standard class sizes and file management needs, and the overall simplicity of
the system allows it to scale to a more important dimension: different types of classes and
assignments.

11

