Computer Systems are Different!

Robert Morris and Frans Kaashoek
6.033 Spring 2009
• All systems are similar
 • But computer systems are different
• Unbounded composability
 • Easy to achieve complexity
• \(\frac{d\text{tech}}{dt} \) large for computer systems
• \(\frac{d\text{cost}}{dt} \) drives qualitative change
Composibility via static discipline

- Be tolerant of inputs and strict on outputs
Digital H/W hidden

- Static discipline
 - Regenerate 0/1 at every gate
 - Noise does not accumulate (analog…)
 - Can chain together arbitrary #s of gates
- Other limits to size
 - Size, cost, reliability, power
- Rapid progress over many decades
 - Digital electronics a vast business
 - Lots of money for R&D -> rapid improvement
- Moore observed pattern for early ICs
"Cramming More Components Onto Integrated Circuits", *Electronics*, April 1965
Moore’s Law

- argument to abandon flexibility of discrete devices
 - cheapness would dominate other considerations
- x-axis is transistors)per die
- y-axis is cost per transistor
- down: marginal cost basically zero
- up: yield, defects
- min is optimum die size: about 10 in 1962!
 - more AND CHEAPER every year
- right graph: plot of minima for a few years
- predicted 2^{16} by 1975: single-chip microprocessor!
- how did that prediction work out?
Transistors/die doubles every ~18 months
2x transistors / 18 months hidden

• Moore was right!
• 1974: 8080 (first serious uproc), 4,500, 2 mhz
• my laptop chip has 400 million
• latest server chips have 2 billion
• improvement AND EXPECTATION has had huge effect
• what drives consistent exponential increase?
Lithography: the driver behind transistor count

- Components/area $O(x^2)$ with feature size
- Total components $O(a)$ with die area
- Switching rate $O(x)$ with feature size
Lithography hidden

- exponential increase due to progress in lithography
 - masks, photosensitive chem, etch
- y-axis: feature size
 - feature: wire or transistor
 - smaller wavelength (ultraviolet)
 - currently 45 nm
- y-axis: die area
 - limited by defects: constant defects / unit area
- we get to multiply area and feature area! for n^3
 - claim 18 months is combination of the two
CPU performance

Trends in CPU performance growth, from microprocessors to supercomputers
CPU performance hidden

- the low end ate the high end
- until 1990 expensive much faster than cheap
 - made very differently, lower integration
- now expensive use same chips as cheap
- there is only one economic technology now

- other tech improved similarly: DRAM and disk
DRAM density

Trends in semiconductor RAM density

Year

Maximum RAM chip capacity (bits)
IC improvements have also driven DRAM memory has gotten much cheaper and denser
 • kilo or a few megabytes in 1980, 1000x in 2009
 • hasn’t gotten a lot faster, maybe 3x
 • memory access time used to be about same as CPU cycle time
 • now CPU 300 times faster!
 • DRAM access is a serious bottleneck
Disk: Price per GByte drops at ~30-35% per year
Disk hidden

- price drop due to increase in density
 - bits per inch on magnetic surface
 - density doubled every year
 - smaller heads, better electronics, surfaces
- early 1980s: 400 MB (!) disks, huge, $10,000
- 2009: 1 TB for about $120, or 12 cents / GB
- what about performance?
 - density helps: transfer rate
 - but seek times decreased only 3x since 1980
 - because mechanical
 - disk seek time is a serious bottleneck!
ENIAC

- 1946
- Only one
- 5000 adds/sec
- 20 10-digit registers
- 18,000 vacuum tubes
- 124,500 watts
- Not really stored program
ENIAC

Illustrate trends w/ selected computers from history
ENIAC: first GP electronic programmable computer
 Electronic Numerical Integrator And Computer
Army 1946, artillery firing tables (12 hr-> 30 min)
no memory, just registers and constant tables
 20 10-digit registers
programmable w/ switches/plugs
 NOT stored program!
5000 ops/second
18,000 vacuum tubes: failure per day!!!
only one, not commercial
UNIVAC (Universal Automatic Computer)

- 1951
- 46 sold
- 2000 ops/sec
- 1,000 12-digit words (mercury)
- 5000 tubes
- $1.5 million
UNIVAC
hidden

- first american commercial computer
 - 1951, 46 sold to big companies / government
- stored program! i.e. program in memory.
- designed by ENIAC designers, in a start-up
- fewer tubes than ENIAC (5000), and slower (2000 ops/sec)
- had memory: 1000 12-digit mercury delay lines
 - encode bits in acoustic waves, recycle
- expensive, huge, required a big staff
IBM System/360-40

- 1964
- 1.6 MHz
- 16-256 KB core
- $225,000
- Family of six
- 32-bit
- Time-sharing
System/360
hidden

- first modern computer system: 1964
- familiar to us (unlike previous examples)
 - 8-bit bytes, 32-bit addresses, time-sharing OS
 - programming languages, compilers
 - some had virtual memory
- a range of compatible models
 - separated architecture from implementation
 - 8K to 512K mem, 1 mhz to 5 mhz
 - $100,000 to $5,000,000 (but mostly leased?)
 - upgrade path: customer can start cheap and grow
 - preserves s/w investment
Cray 1: supercomputer

- 1976
- 80 sold
- 80 MHz
- 8 Mbyte SRAM
- 230,000 gates
- $5 million
Cray-1
hidden

- most famous and almost first super-computer: 1976
 - designed only for speed, not economy
 - you could get more speed for more money
 - simulate nuclear explosions, oil exploration, &c
- 80 mHz: very fast
 - a few mHz typical for the time
 - 130 kilowatts dissipated, due to 80 mHz
 - refrigerated w/ freon, integrated into frame
 - short wires, thus C shape, backplane in center
- 230,000 gates (only a few per chip)
- faster than any microprocessor until early 1990s!
DEC PDP-8 (1964)

- 60,000 sold
- 330,000 adds/sec

- 4096 12-bit words
- $18,000
DEC PDP-8
hidden

- first successful minicomputer
 - 1965, cheap, small, flexible
 - lab of a few people could afford one
- very widely used
 - i have owned two, learned machine lang
- built from chips with a few gates on them (like cray)
- 12 bits: cheap, but guarantees limited family life
 - crummy timesharing and compilers
 - too few address bits a problem even now
- contrast to ibm 360’s 32 bits
- great for a lab, but big/expensive/complex for personal computer
Apple II

- 1977
- 1 MHz
- 6502 microprocessor
- 4 to 48 Kilobytes RAM
- $1300
- Basic, Visicalc
Apple II
hidden

- one of first very successful personal computers
 - cheap/small enough that a family could buy one
 - single-chip microprocessor (6502)
- my high school had these
- games, educational, visicalc (first spread sheet)
- built-in basic interpreter
- pretty low end
 - but this was the winning line of development
IBM’s wrist watch

- 2001
- Linux and X11
- 74 Mhz CPU
- 8 Megabyte flash
- 8 Megabyte DRAM
- Wireless
IBM Linux Wrist-Watch
hidden

- from IBM Tokyo research lab
- about as powerful as Cray-1 (74 mhz, 8MB RAM)
- same size display as early IBM PCs (640x480)
- used to be a joke: impossible and pointless
- but now possible – maybe pointless, but iPhone isn’t
Software hidden

- No h/w limits to composition
 - Big CPU, DRAM, disk, networks
 - CHEAP
- Limiting factor is designers’ understanding
- Tools have improved over the years
 - compilers, type checkers
 - high-level languages
 - language support for modularity
 - many ready-made libraries (modules)
 - version control / build / bug tracking systems
- Programmers are keeping up with hardware!
Software follows hardware

Millions of lines of source code

Windows 3.1 (1992)
Windows NT (1992)
Solaris (1995)
Windows 95
Windows 98
Windows NT 5.0 (1998)
Red Hat Linux 6.2 (2000)
Red Hat Linux 7.1 (2001)
Windows XP
Vista
Cheap → Pervasive

Internet Domain Survey Host Count

Source: Internet Software Consortium (www.isc.org)
Pervasive → qualitative change

log (people per computer)

year

Number crunching

Word processing
Communication

Embedded
Sense/control

Slide from David Culler, UC Berkeley
Storm clouds on horizon hidden

- Complexity
- Robustness increasingly important
- Society and the law
- Scaling problems
Latency improves slowly

- Moore’s law (~70% per year)
- DRAM access latency (~7% per year)
- Speed of light (0% per year)
Heat is a problem
Heat is a problem hidden

• higher clock -> more switching -> heat
• modern CPUs are hot!
• 100w or 200w limit of air/fan cooling
• could go higher w/ liquid, but expensive
Recent Intel CPU Clock Rates

![Graph showing the increase in CPU clock rates from 1988 to 2008 for different Intel CPU models: 486, Pentium, Pentium Pro, Pentium III, Pentium 4, and Pentium 4 HT. The x-axis represents the years from 1988 to 2008, and the y-axis represents the clock rate in MHz.](image)
Clock rates hidden

- up and up for many years
 - smaller features, less capacitance
 - also pipelining
- why stopped in 2005?
 - power / heat
 - small wires and gates: resistance &c
- what now?
 - still more transistors every year
 - can use them to get more performance
 - bigger caches
 - better architecture e.g. better branch prediction
 - more cores
The Future: will it be painful?

AMD Barcelona Quad-core chip
Multicore hidden

• 4x 2 GHz cores rather than one 8 GHz CPU
 • cannot build the latter
 • but 4x is “same performance”
• BUT much harder to program
 • split work into four balanced pieces
 • avoid stepping on toes when using shared data
 • not mainstream, tools (languages) not so good
• So: good news and bad news
What went right?

- Unbounded composibility
- General-purpose computers
 - Only need to make one thing fast
- Separate arch from implementation
 - S/W can exploit new H/W
- Cumulative R&D investment over years