L11: Link and Network layer

Dina Katabi 6.033 Spring 2007

http://web.mit.edu/6.033

Some slides are from lectures by Nick Mckeown, Ion Stoica, Frans Kaashoek, Hari Balakrishnan, Sam Madden, and Robert Morris

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Last lecture: layering of protocols

- Each layer adds/strips off its own header
- Each layer may split up higher-level data
- Each layer multiplexes multiple higher layers
- Each layer is (mostly) transparent to higher layers

<u>Problem:</u> Deliver data from one end of the link to the other

Need to address:

- Bits \rightarrow Analog \rightarrow Bits
- Framing
- Errors
- Medium Access Control (The Ethernet Paper)

Manchester encoding

- Each bit is a transition
- Allows the receiver to sync to the sender's clock

Framing

- Receiver needs to detect the beginning and the end of a frame
- Use special bit-pattern to separate frames
 - E.g., pattern could be 1111111 (7 ones)
- <u>Bit stuffing</u> is used to ensure that a special pattern does not occur in the data
 - If pattern is 1111111 → Whenever the sender sees a sequence of 6 ones in the data, it inserts a zero (reverse this operation at receiver)

Error Handling

- Detection:
 - Use error detection codes, which add some redundancy to allow detecting errors
- When errors are detected
 - Correction:
 - Some codes allow for correction
 - Retransmition:
 - Can have the link layer retransmit the frame (rare)
 - Discard:
 - Most link layers just discard the frame and rely on higher layers to retransmit

Network Layer:

finds a path to the destination and forwards packets along that path

- Difference between routing and forwarding
 - Routing is finding the path
 - Forwarding is the action of sending the packet to the next-hop toward its destination

Forwarding

- Each router has a forwarding table
- Forwarding tables are created by a routing protocol

Forwarding table at R

Dst. Addr	Link
Α	1
В	2
С	1
E	3

Inside a router

The Internet Protocol (IP)

The IP Header

Forwarding an IP Packet

- Lookup packet's DST in forwarding table
 - If known, find the corresponding outgoing link
 - If unknown, drop packet
- Decrement TTL and drop packet if TTL is zero; update header Checksum
- Forward packet to outgoing port
- Transmit packet onto link

And switches today...

11.1.1.1.1.1

Avici TSR

Cisco GSR 12416 6ft x 2ft x 1.5ft 4.2 kW power 160 Gb/s cap.

Lucent 5ESS telephone switch

The Routing Problem:

• Generate forwarding tables

Goals: No loops, short paths, etc.

THE ARPA NETWORK

DEC 1969

4 NODES

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

MAP 4 September 1971

copyright @2005 UC Regents. all rights reserved.

Path Vector Routing Protocol

2

С

Ε

2

Β

1

D

3

- Initialization
 - Each node knows the path to itself

For example, D initializes its paths

DST Link Path
D End layer null

Path Vector

- Step 1: Advertisement
 - Each node tells its neighbors its path to each node in the graph

Path Vector

- Step 2: Update Route Info
 - Each node use the advertisements to update its paths

	DST	Link	Path	_	DST	Link	Path
_	D	End layer	null		D A C E	End layer 1 3 2	null <a> <c> <e></e></c>

<u>Note:</u> At the end of first round, each node has learned all one-hop paths

Path Vector

• Periodically repeat Steps 1 & 2

In round 2, D receives:

From A:		From C:		From E:	
То	Path	То	Path	То	Path
А	null <d></d>	С	null		null
D	<d></d>	D E	null <d> <e> </e></d>	D C	<d> <c></c></d>
te nath		В		·	

D updates its paths:

DST Lir	nk Path	DST	Link	Path
D End A 1 C 3 E 2	layer null <a> <c> <e></e></c>	D A C E B	End layer 1 3 2 <mark>3</mark>	null <a> <c> <e> <c, b=""></c,></e></c>

<u>Note:</u> At the end of round 2, each node has learned all two-hop paths

Questions About Path Vector

- How do we avoid permanent loops?
- What happens when a node hears multiple paths to the same destination?
- What happens if the graph changes?

Questions About Path Vector

- How do we ensure no loops?
 - When a node updates its paths, it never accepts a path that has itself
- What happens when a node hears multiple paths to the same destination?
 - It picks the better path (e.g., the shorter number of hops)
- What happens if the graph changes?
 - Algorithm deals well with new links
 - To deal with links that go down, each router should discard any path that a neighbor stops advertising

Hierarchical Routing

- Internet: collection of domains/networks
- Inside a domain: Route over a graph of routers
- Between domains: Route over a graph of domains
- Address consists of "Domain Id", "Node Id"

Hierarchical Routing

Advantage

- Scalable
 - Smaller tables
 - Smaller messages
- Delegation
 - Each domain can run its own routing protocol

Disadvantage

- Mobility is difficult
 - Address depends on geographic location
- Sup-optimal paths
 - E.g., in the figure, the shortest path between the two machines should traverse the yellow domain.

Routing: many open issues

- Flat addresses and scalable?
- Routing in multihop WiFi networks?
- Routing in peer-to-peer networks?
- Misconfigurations between domains?