
L12: end to end layer

Dina Katabi
6.033 Spring 2007

http://web.mit.edu/6.033
Some slides are from lectures by
Nick Mckeown, Ion Stoica, Frans

Kaashoek, Hari Balakrishnan, Sam
Madden, and Robert Morris

End-to-end layer

stub stub

Network Layer

Link Layer

presentation Layer

End-to-end layer

RPC RPC

H D

H D

H D

H D H D

H D

Header Data Header Data

client server

•  Packets may be:
•  Lossed
•  Delayed (jitter)
•  Duplicated
•  Reordered
•  …

•  Problem: Inconvenient service for applications

•  Solution: Design protocols for E2E modules
•  Many protocols/modules possible, depending on requirements

Network layer provides
best effort service

This lecture: some E2E properties

•  At most once
•  At least once

• Exactly once?

•  Sliding window
•  Case study: TCP
•  Tomorrow: Network File System (NFS)

At Least Once

•  Sender persistently sends until it receives an ack
•  Challenges:

•  Duplicate ACKs
•  What value for timer

Timeout and
Retransmission

 an RTT

client server
Data

ACK

client server
Data

Data

X

Duplicate ACK problem

•  Problem: Request 2 is not delivered
•  violates at-least once delivery

 timeout

Client Server
Req 1

Req 1

ACK

Req 2

Req 3

ACK

Solution: nonce

•  Label request and ack with unique identifier that is never re-used

 timeout

Client Server
Req N1

Req N1
Req N2

Req N2

N1

N2

Engineering a nonce

• Use sequence numbers
•  Challenges:

• Wrap around?
• Failures?

Client Server
Req 1

Req 1
Req 2

Req 2

1

2

 timeout

•  Fixed is bad. RTT changes depending on
congestion
•  Pick a value that’s too big, wait too long to

retransmit a packet
•  Pick a value too small, generates a duplicate

(retransmitted packet).

•  Adapt the estimate of RTT adaptive timeout

Timer value

RTT Measurements
(collected by Caida)

Adaptive Timeout:
Exponential weighted moving averages

•  Samples S1, S2, S3, ..
•  Algorithm

•  EstimatedRTT = T0

•  EstimatedRTT = α S + (1- α) EstimatedRTT
•  where 0 ≤ α ≤ 1

•  What values should one pick for α and T0?
•  Adaptive timeout is also hard

At Most Once Challenges

client server
Req 1

req 1

•  Server shouldn’t process req 1
•  Server should send result preferably

1

2

Process request 1

Process request 1

Idea: remember sequence number

client server
Req 1

req 1

•  Server remembers also last few responses

1

1

2

Ok
ACK 1

Resend ACK 1

Process request 1

Problem: failures
client server

Req 1

req 1

•  Performed request 1 twice!
•  How to maintain the last nonce per sender (tombstone)?

•  Write to non-volatile storage?
•  Move the problem? (e.g., different port number)
•  Make probability of mistake small?

•  How about exactly once? (Need transactions)

1

1

2

Ok
ACK 1

0

0

1

Ok
ACK 1

How fast should the sender sends?

•  Waiting for acks is too slow
•  Throughput is one packet/

RTT
•  Say packet is 500 bytes
•  RTT 100ms
•  Throughput = 40Kb/s,

Awful!

•  Overlap pkt transmission

Host A Host B
Data 1

Data 2

ACK

Send a window of packets

•  Assume the receiver
is the bottleneck
•  Maybe because the

receiver is a slow
machine

•  Receiver needs to
tell the sender when
and how much it can
send

•  The window
advances once all
previous packets are
acked too slow

Host A Host B

Send?

OK, 3 pkts

Idle

2-
4

5-
7

Sliding Window

•  Senders advances
the window
whenever it
receives an ack
sliding window

•  But what is the
right value for the
window?

Host A Host B

Send?

OK, 3 pkts

Idle

2-
4

3-
5

The Right Window Size

•  Assume server is bottleneck
•  Goal: make idle time on server zero
•  Assume: server rate is B bytes/s
•  Window size = B x RTT
•  Danger: sequence number wrap around

•  What if network is bottleneck?
•  Many senders?
•  Sharing?
•  Next lecture

“Negative” ACK

•  Minimize reliance on timer
•  Add sequence numbers to

packets
•  Send a Nack when the

receiver finds a hole in
the sequence numbers

•  Difficulties
•  Reordering
•  Cannot eliminate acks,

because we need to ack the
last packet

Host A Host B

D1
D2
D3

D1

D3

X

D2

D4

Nack-2

E2E layer in Internet

Network

Link

Transport

The 4-layer Internet model

Application HTTP, RTP, Sun RPC, …

IP

TCP or UDP

Ethernet, WiFI, ...

End-to-End
Layer

UDP

Transmission Control Protocol (TCP)

Host A Host B

Syn x

Data x+1, ack y+1

ack x+1, syn y
y, x+1 x,?

x+1, y+1

•  Connection-oriented
•  Delivers bytes at-

most-once
•  Bidirectional

•  ACKs are piggybacked

TCP header

Closing a TCP connection

Host A Host B

fin x

ack x+1

y, x x,y

fin y

ack y+1

closed

timed wait

timeout closed

