L9: Intro Network Systems

Dina Katabi 6.033 Spring 2007

http://web.mit.edu/6.033
Some slides are from lectures by Nick Mckeown, Ion Stoica, Frans
Kaashoek, Hari Balakrishnan, Sam Madden, and Robert Morris

Ilii

What have you seen so far?

Systems	Complexity Modularity Dtechnology/dt	Hierarchy Therac-25
Naming systems	Gluing systems	File system name space
Client/service design	Enforced modularity	X windows
Operating systems	Client/service with in a computer	Eraser and Unix
Performance	Coping with bottlenecks	MapReduce

Client/service using network

- Sharing irrespective of geography
- Strong modularity through geographic separation

Network is a system too!

- Network consists of many networks, many links, many switches
- Internet is a case study of successful network system

Today's topic: challenges

- Economical:
- Universality
- Topology, Sharing, Utilization
- Organizational
- Routing, Addressing, Packets, Delay
- Best-effort contract
- Physical
- Errors, speed of light, wide-range of parameters

MIT Campus Network

Topology Overview ${ }^{\text {T}}$

Circuit Switching

- It's the method used by the telephone network
- A call has three phases:
Establish circuit from end-to-end ("dialing"),
Communicate,
Close circuit ("tear down").
- If circuit not available: "busy signal"

Isochronous Multiplexing/Demultiplexing

One way for sharing a link is TDM:

- A time interval is divided into n frames
- Each frame carries the data of a particular conversation
- E.g., frame 0 belongs to the red conversation

Circuit Switching

- Assume link capacity is C bits/sec
- Each communication requires R bits/sec
- \#frames = C/R
- Maximum number of concurrent communications is C / R
- What happens if we have more than C / R communications?
- What happens if the a communication sends less/more than R bits/sec?
\rightarrow Design is unsuitable for bursty communications

Packet Switching

- Used in the Internet
- Data is sent in Packets (header contains control info, e.g., source and destination addresses)

- Per-packet routing
- At each node the entire packet is received, buffered, and then forwarded)
- No capacity is allocated

Asynchronous Multiplexing/ Demultiplexing

- Multiplex using a queue
- Switch need memory/buffer
- Demultiplex using information in packet header
- Header has destination
- Switch has a forwarding table that contains information about which link to use to reach a destination

Aggregate Internet Traffic Smooths

5-min average traffic rate at an MIT-CSAIL router

Max In: $12.2 \mathrm{Mb} / \mathrm{s} \quad$ Avg. In: $2.5 \mathrm{Mb} / \mathrm{s}$
Max Out: $12.8 \mathrm{Mb} / \mathrm{s} \quad$ Avg. Out: $3.4 \mathrm{Mb} / \mathrm{s}$

Best Effort

No Guarantees:

- Variable Delay (jitter)
- Variable rate
- Packet loss
- Duplicates
- Reordering

Networks are heterogeneous

$d(t e c h n o l o g y) / d t$ for networks

Normalized Growth since 1980

Thanks to Nick Mckeown @ Stanford for some of these data points

Plan for studying network systems

Sharing and challenges	$7 . \mathrm{A}$	Ethernet
Layering	$7 . \mathrm{B}+\mathrm{C}$	End-to-end
Routing	$7 . \mathrm{D}$	Internet routing
End-to-end reliability	$7 . \mathrm{E}$	Network file system
Congestion control	$7 . F$	NATs

