6.033: Security - Network Security
Lecture 23
Katrina LaCurts, lacurts@mit.edu

* secure your own systems, not to attack others. *

0. Today's Threat Model

- Last time: adversary tried to observe or tamper with packets
- Today: adversary is not just passively observing the network, but actively using it to attack users (more actively than the replay/reflection/man-in-the-middle attacks we saw last time)
- Some attacks today don't require adversary to observe packet contents; secure channels won't help

1. DDoS Attacks

- Adversary's goal: bring down a service (e.g., take down the root DNS servers)
- Strategy: congest the service. Make it spend time handling the adversary's requests so that it can't get to legitimate ones
- DoS ("denial of service") attack
 - Adversary sends a bunch of traffic to the service (in many cases even invalid requests will work), queues fill up, packets dropped, etc.
- DDoS ("distributed DoS") attack
 - Mount the attack from multiple machines
- Can target any resource: bandwidth, routing systems, access to a database, etc.
- Consequences of (D)DoS attacks
 - A server being down for a few hours might not seem like the end of the world. But..
 - Could be bank transactions
 - Could be DNS root servers (would bring Internet to a stand-still)
 - Could be on high-frequency trading machines, affect the stock market, etc.

2. Botnets

- Can't we just toughen up our defenses? Add more bandwidth? How much traffic can one adversary generate?
- Botnets: large (~100,000 machines) collection of compromised machines controlled by an attacker.
 - Make it very easy to mount DDoS attacks
 - Can be rented surprisingly cheaply
 - PLEASE DO NOT DO THIS
- How botnets work in five minutes
 - How do machines get compromised (and become part of the botnet)

- Lots of ways. Common way: user visits vulnerable website.
 Vulnerability is usually a cross-site scripting attack.
 Example:
 - TrustedBlog.com has a box for users to enter comments on blogs.
 - Attacker embeds an executable script in his comment
 - When users browse, server sends comments to their browsers which execute the script, which sends the user's cookie to the attacker's site
- XSS script to compromise a botnet machine causes user to download a "rootkit", which compromises the machine
 see tomorrow's recitation
- Bots contact command and control (C&C) servers which give them commands
- How to combat botnets
 - Block IP addresses? Ineffective. Bots can change IP addresses rapidly.
 - Distribute systems so that DDoS attacks don't have a centralized component to bring down? Not bad, but as we've seen, distribution => complexity

3. Network Intrusion Detection Systems (NIDS)

- If we wanted to block IP addresses, how would we even figure out which IPs were part of the botnet?
- Broader question: how do we detect network attacks?
- Two approaches
 - Signature-based: Keep a database of known attack signatures and match traffic against the database.
 - Pros: Easy to understand the outcome, Accurate in detecting known attacks
 - Cons: Can't discover new attacks, Can only get the signature after the attack has already happened at least once
 - Anomaly-based: Match traffic against a model of normal traffic and flags abnormalities.
 - Pros: Can deal with new attacks
 - Cons: How do we model normal traffic?; Less accurate detection of known attacks
- Many systems take a hybrid approach
 - Most also give users the ability to, once an attack is (passively) detected, do something to (actively) prevent it.
- Example intrusion-detection systems:
 - Snort https://www.snort.org/
 - Bro https://www.bro.org/

4. How to evade NIDS

- Suppose we build a NIDS to scan traffic for a particular string ("root"). Seems easy.
- Difficult because attacker can force confusing state on the NIDS (see slides)
- Another way to evade NIDS: mount an attack on the detection

- Attacks that mimic legitimate traffic (and thus are even harder to detect)
 - HTTP flooding
 - Attacker floods webserver with completely legitimate HTTP requests to download a large file or perform some computationally intensive database operation.
 - TCP SYN floods
 - TCP connections start with a "handshake", which cause the server to keep some state about the connection until the client completes the handshake
 - Attacker can initiate many handshakes, exhaust state on the server
 - Optimistic ACKs
 - Attacker starts TCP communication with victim, ACKs packets that it hasn't received yet
 - Victim sends more and more traffic to the attacker, saturating their own link
 - DNS reflection/amplification
 - Bots locate DNS nameservers (even better if they are DNSSEC-enable)
 - Bots send DNS requests to these nameservers
 - Spoof sources to be the victim's IP address
 - If DNSSEC-enable, request the relevant info. DNSSEC responses tend to be very large
 - Result: Large DNS responses that go to the victim's machine
- 6. Attacks on routers
 - Suppose adversary gains access to routers. Could:
 - Overload the router CPU with lots of routing churns
 - Overload the routing table with too many routes
 - Hijack prefixes
 - Attacker gets an AS to announce that it originates a prefix that it doesn't actually own. Or to announce a more specific (and thus more-preferred) prefix. Or to just lie that a shorter route exists.
 - Example: http://www.wired.com/2014/08/isp-bitcoin-theft/
 - Example: https://www.ripe.net/publications/news/industry-developments/ youtube-hijacking-a-ripe-ncc-ris-case-study
 - Example:
 - https://greenhost.nl/2013/03/21/spam-not-spam-tracking-

hijacked-

- spamhaus-ip/
- Example: https://www.theverge.com/2018/4/24/17275982/
 myetherwallet-hack-bgp-dns-hijacking-stolen-ethereum
- Solution: secure BGP. Similar mechanism as DNSSEC. But, with authentication, creating advertisements (signing them) takes about 100 times as long as it does now.

 Also need a lot of ASes to buy into this at once, otherwise it's not worth it

7. Moral of the story

- Secure channels are great, but adversaries can still use the network to mount attacks
- These attacks become devastating if they attack parts of the Internet's infrastructure (e.g., DNS, BGP)
- Proposals exist to secure the infrastructure (DNSSEC, Secure BGP), but there are problems
- It should blow your mind -- and worry you -- that so much of the Internet is unsecured.