
6.033 Spring 2017
Lecture #7

• Approaching Performance Problems
• General Performance-improvement Techniques

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers

threads
(virtualize processors)

(virtualize communication links)

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

virtual machine monitor (VMM)

guest OSguest OS

physical hardware

virtual hardware virtual hardware

U/K,	PTR,	page	table,	…

virtual machines: enforce modularity between multiple
OSes running on the same physical machine

U/K	
PTR	

page	table…

U/K	
PTR	

page	table…

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

how do we get systems (operating
or otherwise) to not just work, but

to work well?

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

1. measure the system to find the
bottleneck  

How to Improve Performance in
Two Easy Steps

2. relax the bottleneck

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

few users
 low latency
 low throughput (few users = few requests)

number of users

th
ro

ug
hp

ut

6.033 | spring 2017 | lacurts@mit.edu

number of users

la
te

nc
y

mailto:lacurts@mit.edu?subject=

moderate users
 low latency (new users consume previously idle resources)
 high throughput (more users = more requests)

number of users

la
te

nc
y

6.033 | spring 2017 | lacurts@mit.edu

number of users

th
ro

ug
hp

ut

mailto:lacurts@mit.edu?subject=

many users
 high latency (requests queue up)
 throughput plateaus (can’t serve requests any faster)

number of users

th
ro

ug
hp

ut

6.033 | spring 2017 | lacurts@mit.edu

number of users

la
te

nc
y

mailto:lacurts@mit.edu?subject=

1. measure the system, and
compare it to our system model,
to find the bottleneck  

How to Improve Performance in
Two Easy Steps

2. relax the bottleneck

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

platters

tracks

sectors

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

example	disk	specs	(Hitachi	7K400)	

capacity:	400GB	
number	of	platters:	5	
number	of	heads:	10	
number	of	sectors	per	track:	567-1170	
number	of	bytes	per	sector:	512	
time	for	one	revolution:	8.3ms	
average	read	seek	time:	8.2ms	
average	write	seek	time:	9.2ms

6.033 | spring 2017 | lacurts@mit.edu

mailto:lacurts@mit.edu?subject=

1. measure the system to find the
bottleneck  

How to Improve Performance in
Two Easy Steps

2. relax the bottleneck
- batch requests
- cache data
- exploit concurrency
- exploit parallelism
- use newer technology?

6.033 | spring 2017 | lacurts@mit.edu

example	disk	specs	(OCZ	Vertex	3)	

sequential	read:	400MB/sec	
sequential	write:	200-300MB/sec	
random	4K	reads:	23MB/sec	
random	4K	writes:	9MB/sec

6.033 | spring 2017 | lacurts@mit.edu

• Approaching Performance Problems  
 We approach performance problems in systems by  
 measuring and modeling our system to find the  
 bottleneck, and then relaxing (fixing) the bottleneck 

• Performance-improvement Techniques 
 Four common techniques to improve performance:  
 batching, caching, concurrency, and parallelism.  
 To be effective, all of these techniques require an  
 understanding of how the underlying system works  
 and is used

6.033 | spring 2017 | lacurts@mit.edu

