Lecture #9: Routing at scale, and with policy
Katrina’s favorite protocol
1970s: ARPAnet
1978: flexibility and layering
early 80s: growth → change
late 80s: growth → problems
1993: commercialization

hosts.txt distance-vector routing
TCP, UDP OSPF, EGP, DNS
(a link-state routing protocol)

application the things that actually generate traffic

transport sharing the network, reliability (or not)
examples: TCP, UDP

network naming, addressing, routing
examples: IP

link communication between two directly-connected nodes
examples: ethernet, bluetooth, 802.11 (wifi)

last time: neither distance-vector nor link-state routing will scale to the size of the Internet, nor do either let us address policy routing

CAIDA's IPv4 AS Core, February 2017
(https://www.caida.org/research/topology/as_core_network/2017/)
1970s: ARPAnet
1978: flexibility and layering
1980s: growth → change
late 80s: growth → problems
1993: commercialization

application: the things that actually generate traffic
transport: sharing the network, reliability (or not)
examples: TCP, UDP
network: naming, addressing, routing
examples: IP
link: communication between two directly-connected nodes
examples: ethernet, bluetooth, 802.11 (wifi)

this time: scale and policy!
(so we’re thinking about the Internet specifically today, not just any network)

CAIDA’s IPv4 AS Core, February 2017
(https://www.caida.org/research/topology/as_core_network/2017/)

notice that I’m not highlighting the network layer; we’ll talk about why
scalable routing: a few different things allow us to route across the Internet
scalable routing: a few different things allow us to route across the Internet

1. hierarchy of routing: route between ASes, and then within an AS
scalable routing: a few different things allow us to route across the Internet

1. hierarchy of routing: route between ASes, and then within an AS

2. path-vector routing: advertisements include the path, to better detect routing loops
scalable routing: a few different things allow us to route across the Internet

1. **hierarchy of routing**: route between ASes, and then within an AS

2. **path-vector routing**: advertisements include the path, to better detect routing loops

3. **topological addressing**: assign addresses in contiguous blocks to make advertisements smaller

\[(A, 2, (B, A))\]

\[18.0.0.0, \ldots ,18.0.0.255\]

\[18.0.0.0/24\]
scalable routing: a few different things allow us to route across the Internet

1. **hierarchy of routing:** route between ASes, and then within an AS

2. **path-vector routing:** advertisements include the path, to better detect routing loops

3. **topological addressing:** assign addresses in contiguous blocks to make advertisements smaller

now that we have **scale**, we want a means to implement **policy**
common AS relationships
arrows describe the flow of money; traffic may flow in both directions
customer pays provider for transit

common AS relationships
arrows describe the flow of money; traffic may flow in both directions
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit
makes money whenever any traffic flows on this link

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

Katrina LaCurts | lacurts@mit.edu | 6.033 2021
makes money whenever any traffic flows on this link.

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit
makes money whenever any traffic flows on this link

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit
makes money whenever any traffic flows on this link!

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

typically a provider will charge more money to its customers than it pays its own provider, so E still makes a profit here

makes money whenever any traffic flows on this link

makes money whenever any traffic flows on this link
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal
common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other’s customers

*as long as the amount of traffic in each direction is roughly equal
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal
if a node (E) allows its two peers to send traffic through it to their respective customers, it makes no money.

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal.
customer pays **provider** for transit

peers allow (free*) mutual access to each other’s customers

*as long as the amount of traffic in each direction is roughly equal

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

A \(\rightarrow \) **B** \(\rightarrow \) **C**

D \(\rightarrow \) **E** \(\rightarrow \) **F**

G
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in **export policies**
which routes to advertise, and to whom
we’re focusing on the middle node (E) right now; ignore the gray nodes

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies
which routes to advertise, and to whom
we’re focusing on the middle node (E) right now; ignore the gray nodes

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in **export policies**
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone
common AS relationships

arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers

*as long as the amount of traffic in each direction is roughly equal

the relationships are reflected in export policies

which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

we’re focusing on the middle node (E) right now; ignore the gray nodes
providers tell everyone about themselves and their customers, and tell their customers about everyone!

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

we’re focusing on the middle node (E) right now; ignore the gray nodes
a provider wants its customers to send and receive as much traffic through the provider as possible

we're focusing on the middle node (E) right now; ignore the gray nodes

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other's customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in **export policies**
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone
providers tell everyone about themselves and their customers, and tell their customers about everyone!

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

this slide represents one “round” of advertisements from node E; other routes will be discovered in subsequent rounds (see next slide)
providers tell everyone about themselves and their customers, and tell their customers about everyone

peers tell each other about their customers

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers

*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies

which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

peers tell each other about their customers

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

i can reach

this slide represents one “round” of advertisements from node E; other routes will be discovered in subsequent rounds (see next slide)
notice that peers do not tell each other about their own providers; they would lose money providing that transit

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in **export policies**
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

peers tell each other about their customers

this slide represents one “round” of advertisements from node E; other routes will be discovered in subsequent rounds (see next slide)
notice that peers *do not* tell each other about their own providers; they would lose money providing that transit.

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

- **customer** pays **provider** for transit

- **peers** allow (free*) mutual access to each other’s customers
 - *as long as the amount of traffic in each direction is roughly equal*

these relationships are reflected in export policies

which routes to advertise, and to whom

- **providers** tell everyone about themselves and their customers, and tell their customers about everyone

- **peers** tell each other about their customers

this slide represents one “round” of advertisements from node E; other routes will be discovered in subsequent rounds (see next slide)
in this example, some of our ASes are **unable** to send traffic to (G) ; they do not know about any routes to it

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays **provider** for transit

peers allow (free*) mutual access to each other's customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in **export policies**
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

peers tell each other about their customers
in this example, some of our ASes are **unable** to send traffic to (G); they do not know about any routes to it

common AS relationships

arrows describe the flow of money; traffic may flow in both directions

- **Customer** pays **provider** for transit

- **Peers** allow (free*) mutual access to each other’s customers
 *as long as the amount of traffic in each direction is roughly equal

These relationships are reflected in export policies

which routes to advertise, and to whom

- **Providers** tell everyone about themselves and their customers, and tell their customers about everyone

- **Peers** tell each other about their customers

in fact, there are quite a few ASes here that are disconnected from one another
providers tell everyone about themselves and their customers, and tell their customers about everyone’s peers.

peers allow (free*) mutual access to each other’s customers.
*as long as the amount of traffic in each direction is roughly equal.

these relationships are reflected in export policies, which routes to advertise, and to whom.

providers tell everyone about themselves and their customers, and tell their customers about everyone’s peers.

customer pays provider for transit.

common AS relationships
arrows describe the flow of money; traffic may flow in both directions.
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays *provider* for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in
export policies
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

peers tell each other about their customers
providers tell everyone about themselves and their customers, and tell their customers about everyone's peers
tell each other about their customers

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other's customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone's peers tell each other about their customers
on the Internet, all of the top tier ("tier-1") ISPs peer, to provide global connectivity

this is an extremely simplified diagram. you’d expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are reflected in export policies
which routes to advertise, and to whom

providers tell everyone about themselves and their customers, and tell their customers about everyone

peers tell each other about their customers

Katrina LaCurts | lacurts@mit.edu | 6.033 2021
common AS relationships
arrows describe the flow of money; traffic may flow in both directions

customer pays provider for transit

peers allow (free*) mutual access to each other’s customers
*as long as the amount of traffic in each direction is roughly equal

these relationships are also reflected in import policies
which routes to use

on the Internet, all of the top tier (“tier-1”) ISPs peer, to provide global connectivity

this is an extremely simplified diagram. you’d expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships.
ASes set their own import policies. Typically, if an AS hears about multiple routes to a destination, it will prefer to use its customers first, then peers, then providers.

If that's not enough, a variety of other attributes are provided.

Common AS relationships

Arrows describe the flow of money; traffic may flow in both directions.

- **Customer** pays **provider** for transit.
- **Peers** allow (free*) mutual access to each other's customers, as long as the amount of traffic in each direction is roughly equal.

These relationships are also reflected in **import policies**, which routes to use.

On the Internet, all of the top tier (“tier-1”) ISPs peer, to provide global connectivity.

This is an extremely simplified diagram. You'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships.
on the Internet, all of the top tier (“tier-1”) ISPs peer, to provide global connectivity

this is an extremely simplified diagram, you’d expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

BGP is an application layer protocol, even though it deals with routing

application
the things that actually generate traffic

transport
sharing the network, reliability (or not)
examples: TCP, UDP

network
naming, addressing, routing
examples: IP

link
communication between two directly-connected nodes
examples: ethernet, bluetooth, 802.11 (wifi)
on the Internet, all of the top tier ("tier-1") ISPs peer, to provide global connectivity

this is an extremely simplified diagram. you’d expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

does BGP scale?
on the Internet, all of the top tier ("tier-1") ISPs peer, to provide global connectivity

does BGP scale?

it works on the Internet (which is good), but the size of routing tables, route instability, multihoming, and iBGP all cause scaling issues

this is an extremely simplified diagram. you’d expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships
on the Internet, all of the top tier ("tier-1") ISPs peer, to provide global connectivity

this is an extremely simplified diagram. you'd expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

does BGP scale?

it works on the Internet (which is good), but the size of routing tables, route instability, multihoming, and iBGP all cause scaling issues

is BGP secure?
on the Internet, all of the top tier (“tier-1”) ISPs peer, to provide global connectivity

This is an extremely simplified diagram. You’d expect to see other sorts of peering agreements in this graph, and in fact other sorts of AS relationships

does BGP scale?

It works on the Internet (which is good), but the size of routing tables, route instability, multihoming, and iBGP all cause scaling issues

is BGP secure?

It is not!
on the Internet, all of the top tier ("tier-1") ISPs peer, to provide global connectivity

does BGP scale?

It works on the Internet (which is good), but the size of routing tables, route instability, multihoming, and iBGP all cause scaling issues.

is BGP secure?

It is not!

BGP basically relies on the honor system.

Mark Imbriaco
@markimbriaco

BGP basically relies on the honor system.

holly @girlziplocked
What's a dirty secret that everybody in your industry knows about but anyone outside of your line of work would be scandalized to hear?

Show this thread
on the Internet, we have to solve all of the “normal” networking problems (addressing, routing, transport) at massive scale, while supporting a diverse group of applications and competing economic interests.