REMINDER

course evaluations are online
http://web.mit.edu/subjectevaluation/

please fill them out — they provide extremely valuable feedback to all instructors
• Bitcoin and blockchains (and anonymity)
principal
(identifies client on server)

guard

resource
suppose we want a distributed (and decentralized) public log that multiple users can read from/write to

one motivation: digital currency

challenge: what if I don’t want other users to be able to tie my transactions back to me personally?

e.g., I don’t want everyone in the world to know that Katrina LaCurts just spent money buying 10,000 tiny hands
suppose we want a distributed (and decentralized) public log that multiple users can read from/write to

one motivation: digital currency

users will be anonymous
identified only by their public keys

challenge: how do we prevent an adversary from editing our transactions?
suppose we want a **distributed** (and decentralized) public log that multiple users can read from/write to

one motivation: digital currency

users will be anonymous

identified only by their public keys

users will sign their transactions

prevents adversary from tampering with log data

challenge: how do we prevent an adversary from reordering/removing/duplicating transactions?
suppose we want a distributed (and decentralized) public log that multiple users can read from/write to
one motivation: digital currency

users will be anonymous
identified only by their public keys

users will sign their transactions
prevents adversary from tampering with log data

users will include a hash of the previous transaction as part of their signed data
prevents adversary from re-ordering
suppose we want a distributed (and decentralized) public log that multiple users can read from/write to

one motivation: digital currency
suppose we want a **distributed** (and decentralized) public log that multiple users can read from/write to

one motivation: digital currency

PK_A

PK_B

PK_V

(“V” for eVil)
suppose we want a **distributed** (and decentralized) public log that multiple users can read from/write to

one motivation: digital currency

in the world of digital currency, PKv might do this to try to spend the same “coin” in multiple places

which log is correct?

we need **consensus**

note that a similar situation could occur for completely innocuous reasons, not just because of an attack from PKv
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

idea: PK_A broadcasts their transaction to the network, waits for a majority of users to confirm it
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs.

idea: PK_A broadcasts their transaction to the network, waits for a majority of users to confirm it.
goal: the system should come to a consensus on what the correct log is, and ignore all other logs

idea: PKv broadcasts their transaction to the network, waits for a majority of users to confirm it
goal: the system should come to a consensus on what the correct log is, and ignore all other logs.

Problem: PKv can create many identities ("sybils") on the network, verify any transaction they want.
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

idea: if users receive different logs, they only append to the one that is longest, and don’t distribute any others
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

idea: if users receive different logs, they only append to the one that is longest, and don’t distribute any others
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

idea: if users receive different logs, they only append to the one that is longest, and don’t distribute any others
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

idea: if users receive different logs, they only append to the one that is longest, and don’t distribute any others
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

problem: at what point can a user decide that their transaction is confirmed?
 e.g., how does PK_A know that their transaction is part of the “correct” log?
goal: the system should come to a **consensus** on what the correct log is, and ignore all other logs

idea: transaction t is confirmed when it’s followed by N blocks in the log

if $N = 2$, PK_A’s transaction is confirmed at this point
Goal: The system should come to a consensus on what the correct log is, and ignore all other logs.

Idea: Transaction t is confirmed when it's followed by N blocks in the log.
goal: the system should come to a consensus on what the correct log is, and ignore all other logs

problem: PKV can create sybil and validate as many blocks as is necessary; it’s easy to validate blocks
goal: the system should make it difficult to **validate** blocks

(validate = add a block to the log)

solution: proofs of work
goal: the system should make it difficult to validate blocks
(valideate = add a block to the log)

PKv: \text{hash}(\uparrow) \quad PKv: tx_1
PKv: \text{hash}(\uparrow) \quad PKv: tx_2
PKA
PKB

now it is \textbf{difficult} for PKv to validate all of the necessary blocks, even with Sybils
(requires a lot of compute power, not just a lot of identities)
goal: the system should make it difficult to **validate** blocks

(\text{validate} = \text{add a block to the log})

now it is **difficult** for \(PK_V \) to validate all of the necessary blocks, even with Sybils

(\text{requires a lot of compute power, not just a lot of identities})
a distributed public log that multiple users can read from/write to

one motivation: digital currency

PK_A

PK_B

PK_C

this log is the blockchain

(this typically a block will contain multiple transactions, not one as we’ve been showing)
a distributed public log that multiple users can read from/write to

one motivation: digital currency

the process of validating transactions is known as mining

users receive payment (bitcoins) for validating blocks
a distributed public log that multiple users can read from/write to
one motivation: digital currency

PK_A: tx
PK_B: tx
PK_C: tx

PK_A: tx
hash(↑) nonce
PK_B: tx
hash(↑) nonce
PK_C: tx
hash(↑) nonce
PK_C: tx
hash(↑) nonce
PK_B: tx
hash(↑) nonce
PK_A: tx

if multiple users validate the same block at (roughly) the same time, the blockchain will fork
the system resolves this problem since miners will only work on the longest fork
a distributed public log that multiple users can read from/write to
one motivation: digital currency

PK_A: tx
PK_B: tx
PK_C: tx

hash(↑) nonce
PK_A: tx
PK_B: tx
PK_C: tx

a block is confirmed after 5* valid blocks follow it in the blockchain

* 5 is common, but this is a tunable parameter
• **Bitcoin** is a decentralized digital currency. Being decentralized means that there is no bank; in Bitcoin, everyone is the bank.

• Bitcoin provides a distributed public log called the **blockchain** that can be used for purposes other than digital currency. It uses **proofs-of-work** to prevent Sybil Attacks, since strong identities won’t work.

• In theory, users of Bitcoin are **anonymous**; in practice, it’s not clear how true that is.