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How did language evolve? A popular approach points to the
similarities between the ontogeny and phylogeny of language.
Young children’s language and nonhuman primates’ signing both
appear formulaic with limited syntactic combinations, thereby
suggesting a degree of continuity in their cognitive abilities. To
evaluate the validity of this approach, as well as to develop a quan-
titative benchmark to assess children’s language development, I
propose a formal analysis that characterizes the statistical profile
of grammatical rules. I show that very young children’s lan-
guage is consistent with a productive grammar rather than
memorizationof specificword combinations from caregivers’ speech.
Furthermore, I provide a statistically rigorous demonstration
that the sign use of Nim Chimpsky, the chimpanzee who was
taught American Sign Language, does not show the expected
productivity of a rule-based grammar. Implications for theories
of language acquisition and evolution are discussed.
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The hallmark of human language, and Homo sapiens’ great
leap forward, is the combinatorial use of language to create

an unbounded number of meaningful expressions (1). How did
this ability evolve? For a cognitive trait that inconveniently left
no fossils behind, a popular approach points to the continuity
between the ontogeny and phylogeny of language (2–4): “the
most promising guide to what happened in language evolution,”
according to a comprehensive recent survey (5). Young children’s
language is similar to the signing patterns of primates: Both
seem to result from imitation because they show limited and
formulaic combinatorial flexibility (6, 7). Only human children
will go on to acquire language, but establishing a common starting
point before full-blown linguistic ability may reveal the transient
stages in the evolution of language.
The ontogeny and phylogeny argument has force only if the

parallels between primate and child language are genuine. In-
deed, the assessment of linguistic capability, in both children and
primates, has been controversial. Traditionally, children’s lan-
guage is believed to include abstract linguistic representations and
processes even though their speech output may be constrained by
nonlinguistic factors, such as working memory limitations. The
relatively low rate of errors in many (but not all) aspects of child
language is often cited to support this interpretation (8). A re-
cent alternative approach emphasizes the memorization of spe-
cific strings of words rather than systematic rules (6, 9); the rarity
of errors in child language could be attributed to memorization
and retrieval of specific linguistic expressions in the adult input
(which would be largely error-free).
The main evidence for learning by memorization comes from

the relatively low degree of combinatorial diversity, which can be
quantified as the ratio of attested vs. possible syntactic combi-
nations. For instance, English singular nouns can interchange-
ably follow the singular determiners “a” and “the” (e.g., “a/the
car,” “a/the story”). If every noun that follows “a” also follows
“the” in some sample of language, the diversity measure will be
100%. If nouns appear with “a” or “the” exclusively, the diversity
measure will be 0%. Even at the earliest stage of language
learning, children very rarely make mistakes in the use of de-
terminer-noun combinations: Ungrammatical combinations (e.g.,
“the a dog,” “cat the”) are virtually nonexistent (10). However,

the syntactic diversity of determiner-noun combinations is quite
low: Only 20–40% of singular nouns in child speech appear
with both determiners, and the rest appear with one determiner
exclusively (11). These low measures of diversity have been in-
terpreted as the absence of a systematic grammar: If the com-
bination of determiners and nouns is truly independent and
productive, a higher proportion of nouns may be expected to pair
with both suitable determiners. However, subsequent studies
show comparably low diversity measures in the speech of mothers,
whose linguistic productivity is not in doubt (12). Perhaps more
paradoxically, analysis of the Brown Corpus (13), a collection
of English print materials, shows that only 25% of single nouns
appear with both determiners, fewer than the diversity measure
of very young children (11); it seems absurd to suggest that pro-
fessional writers have a less systematic grammar than 2-y-old
children.
The assessment of nonhuman primates’ ability to learn language

has also been riddled with controversies. Many earlier studies
were complicated by researchers’ subjective interpretations of
behavioral data (reviewed in ref. 14). Project Nim was a no-
table exception (7). Nim Chimpsky was a chimpanzee taught
American Sign Language (ASL) by human surrogate parents
and teachers. Importantly, Nim’s sign production data remain
the only publicly available corpus from primate language re-
search (15). Nim produced numerous sign combinations that
initially appeared to follow a grammar-like system. However,
further video analysis showed evidence of imitation of the
teachers, leading the researchers to a negative assessment of Nim’s
linguistic ability (7). Yet video analysis of human primate in-
teraction also contains an element of subjectivity, and the debate
over primates’ linguistic abilities continues (16).
These conflicting and paradoxical interpretations of child and

primate languages are due, in part, to the absence of a statisti-
cally rigorous analysis of language use. What is the statistical
profile of language if it follows grammatical rules? How is that
distinguished from the statistical profile of language use by im-
itation? This paper develops a statistical test that can detect the
presence or absence of grammatical rules based on a linguistic
sample. I use this test to show that very young children’s
language is consistent with a grammar that independently com-
bines linguistic units and is inconsistent with patterns of mem-
orization of caregivers’ speech. Furthermore, I show that Nim’s
sign combinations fall below the diversity expected of a rule-
based grammar. I start with some statistical observations about
language.

Statistics of Grammar
Zipf’s Law and Language. It is well known that Zipf’s law accu-
rately characterizes the distribution of word frequencies (17). Let
nr be the word of rank r among N distinct words. Its probability,
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Empirical tests (18) have shown Zipf’s law to be an excellent
fit for word frequencies across languages and genres, especially
for relatively common words (e.g., the top 10,000 words in En-
glish). Zipf’s law implies that much of the probability mass in a
linguistic sample comes from relatively few but highly frequent
types. Many words, over 40% in the Brown Corpus, appear only
once in the sample. It is also worth noting that Zipf’s law is not
unique to language and has been observed in many natural and
social phenomena (reviewed in ref. 19).
I now investigate how Zipf’s law affects the combinatorial

diversity in language use. Consider the English noun phrase (NP)
rule in previous studies of child language (10–12), where a closed
class functor (“a” and “the”) can interchangeably combine with
an open class noun to produce, for example, “a/the cookie” or
“a/the desk.” These combinations can be described as a rule
“NP→DN,” where the determiner (D) is “a” or “the” and the
noun (N) is “car,” “cookie,” or “cat,” for example. Other types of
grammar rules can be analyzed in a similar fashion.
Two empirical observations are immediate (details are pro-

vided in SI Text). First, because many nouns appear only once, as
indicated by Zipf’s law, they can only be used with a single de-
terminer. The lack of opportunities to be paired with the other
determiner has been inappropriately interpreted as a restriction
on combinations, as Valian et al. (12) noted. Second, even when
a noun is used multiple times, it may still be paired exclusively
with one determiner rather than with both, due to entirely in-
dependent factors. For instance, although the noun phrases “the
bathroom” and “a bathroom” both follow the rule NP→DN, the
former is much more common in language use. By contrast, “a
bath” appears more often than “the bath.” These use asymme-
tries are unlikely to be linguistic but only mirror life. Empirically,
nouns favor one determiner over the other by a factor of 2.5,
which is also approximated by Zipf’s law. Thus, even if a noun
appears multiple times in a sample, there is a still significant
chance that it will be paired with one determiner exclusively.
Taken together, these statistical properties of language may give
rise to low-syntactic diversity measures, which have been inter-
preted as memorization of specific strings of words. At the same
time, the Zipfian characterization of language provides a simple
and accurate way to establish the statistical profile of grammar.

Statistical Profile of Grammar. Keeping to the determiner-noun
example, I calculate the expected ratio of nouns combined with
both determiners in a linguistic sample. The two categories of
words and their combinations can be likened to the familiar urns
and marbles in probability problems. Consider two urns: One
contains a red marble and a blue marble, the other contains N
distinct green marbles, and all the marbles are drawn with fixed
probabilities. A trial consists of independently drawing one
marble from each urn (with replacement); that is, a green marble
is paired with either a red marble or a blue marble at every trial.
After S trials, where S is sample size, one counts the percentage
of green marble types that have been paired with both red and
blue ones. In linguistic terms, the red and blue marbles in the
first urn are the determiners “a” and “the” and the green marbles
in the second urn represent nouns that may be combined with
the determiners.
If the pairing between determiners and nouns follows the rule

NP→DN and is independent, I can calculate the expected
probability of a specific DN pairing as the product of their
marginal probabilities. Let nr be the rth most frequent noun in

the sample of S pairs of determiner-noun combinations and pr be
its marginal probability. Suppose the probability of drawing the
ith determiner is di. In the S pairs of determiner-noun combi-
nations, the expected probability of nr being drawn with both
determiners, Er, is as follows (derivations are provided in SI Text):

Er = 1− ð1− prÞS −
XD

i= 1

h
ðdipr + 1− prÞS − ð1− prÞS

i

In the NP case with two determiners, I have D = 2. The
expected diversity average of the entire sample is as follows:

E½D$ = 1
N

XN

r= 1
Er [2]

The calculation is further simplified because frequencies of
words can be accurately approximated by Zipf’s law; that is, the
probability of a word is inversely proportional to its rank (Eq. 1).
This enables us to calculate the expected combinatorial diversity
based only on the sample size S and the number of distinct nouns
type N appearing in the sample.

Results
Early Child Language Follows a Grammar. The statistical analysis in
Eq. 2 gives an expected ratio of nouns appearing with both
determiners if their combinations are independent. The expected
value can then be compared with the empirical value to see if the
observed profile of use is consistent with theoretical expectation.
I evaluate 10 language samples (details are provided in SI

Text). Nine are drawn from the publicly available data (20) of
young children learning American English at the very beginning
of syntactic combinations, that is, the two-word stage. For com-
parison, I also evaluate the Brown Corpus (13), for which the
writers’ grammatical competence is not in doubt. For each
sample, determiner-noun pairs are automatically extracted to
obtain the empirical percentages of nouns appearing with both
determiners. These values are then compared with theoretical
expectations from Eq. 2. The two sets of values are nearly
identical (Fig. 1A). Lin’s concordance correlation coefficient test
(21), which is appropriate for testing identity between two sets of
continuous variables, confirms the agreement (ρc = 0.977, 95%
confidence interval: 0.925–0.993). In other words, very young
children’s language fits the statistical profile of a grammatical
rule that independently combines syntactic categories.
The syntactic diversities in the linguistic samples show con-

siderable variation, highlighted by the paradoxical finding that
the Brown Corpus shows less diversity than the language of
young children. The nature of variation is formally analyzed in
SI Text, which suggests that the average number of times a noun
is used in the speech sample (S/N) predicts the diversity measure
(a similar analysis is presented in ref. 12). This prediction is
strongly confirmed, because the average number of occurrences
per noun correlates nearly perfectly with the diversity measure
(ρ = 0.986, P < 10−5). As the results from the Brown Corpus
show, the previous literature is mistaken to interpret the value of
combinatorial diversity as a direct reflection of grammatical
productivity (6, 11).

Role of Memory in Language Learning. I now ask whether
children’s determiner use can be accounted for by models that
memorize specific word combinations rather than using general
rules, as previously suggested (9). To test this hypothesis, I
consider a model that retrieves from jointly formed, as opposed
to productively composed, determiner-noun pairs. In contrast to
the grammar model, which can be viewed as drawing indepen-
dently from two urns, the memory model is akin to (invisible)
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strings connecting balls from the two urns: Drawing a noun can
only be paired with the determiner(s) that the learner has ob-
served in the input data.
The memory model is constructed from 1.1 million child-

directed English utterances in the public domain (20), which is
approximately the amount of input children at the beginning of
the two-word stage may have received (22). This sample of adult
language contains nouns that appear with both determiners, as
well as a large number that appear with only one determiner, for
reasons discussed earlier.
For each of the nine child language samples, I randomly draw

a matching number of pairs (with replacement) from the mem-
orized determiner-noun pairs; the probability with which a pair is
drawn is proportional to its frequency. I calculate the ratio of
nouns in the drawing that appear with both “a” and “the” over
1,000 simulations and compare it with the empirical values of
multiple determiner-noun combinations (SI Text). Results (Fig.
1B) show that the model significantly underpredicts the diversity
of word combinations for every sample of child language (P <
0.002, paired one-tailed Mann–Whitney test).
There is no doubt that memory plays an important role in

language learning: Words and idioms are the most obvious
examples. Our results show that memory cannot substitute for
the combinatorial power of grammar, even at the earliest stages
of child language learning. Moreover, because the memory
model produces significantly lower diversity measures than the
empirical values, children in the present study are unlikely to be
using a probabilistic mixture of grammar and memory retrieval.
That would only produce diversity measures between the mem-
ory model and the grammar model, the latter of which, alone,
already matches the empirical values accurately.

Nim’s Sign Combinations. What about our primate cousins? I in-
vestigate the sign combinations of Nim Chimpsky, a chimpanzee
who was taught ASL (7, 15). Nim acquired ∼125 ASL signs and
produced thousands of multiple sign combinations, with the vast
majority being two-sign combinations. Like the NP rule NP→DN,
Nim’s signs can be described as a closed class functor, such as
“give” and “more,” combined with an open class sign, such as
“apple,” “Nim,” or “eat.” The data include eight construction
types that could be viewed as potential rules (7) (complete
descriptions are provided in SI Text). These combinations are not
fully language-like, because the signs in these constructions do
not fall into conventional categories, such as nouns and verbs.
They do, however, suggest Nim’s ability to express meanings in a
combinatorial fashion.
I calculate the expected diversity from Eq. 2 if Nim followed

a rule-like system that independently combines signs. Given the
relatively small number of open class items and large number of
combinations, a productive grammar is expected to have very
high diversity measures. I then compare these expected values

against the empirical values in Nim’s sign combinations. Results
(Fig. 1C) show that Nim falls considerably below the expected
diversity of a rule-based system (P < 0.004, paired one-tailed
Mann–Whitney test). Our conclusion is consistent with the video
analysis results that Nim’s signs followed rote imitation rather
than genuine grammar (7).
Nonhuman primates’ communicative capacity is complex, and

their ability to learn word-like symbolic units is well documented
(16, 23). There might be other cognitive systems that differen-
tiate between humans and nonhuman primates (24) and play
a role in the development and evolution of language. Our result
is a rigorous demonstration that Nim’s signing lacked the com-
binatorial range of a grammar, the hallmark of human language
evident even in very young children’s speech.

Discussion
I envision the present study to be one of many statistical tests to
investigate the structural properties of human language. This
represents a unique methodological perspective distinct from
most behavioral studies of language and cognition, which typi-
cally rely on differentiation between experimental results and
null hypotheses (e.g., chance level performance). By contrast, the
test developed here produces quantitative theoretical predictions,
where one seeks statistical confirmations, rather than mismatches,
against empirical data. Zipf’s law, which provides a simple and
accurate statistical characterization of language, enhances the
robustness and applicability of the test across speakers and genres.
The present study also helps to clarify the nature of children’s

early language. It suggests that at least some components of child
language follow abstract rules from the outset of syntactic ac-
quisition. I acknowledge the role of memorization in language (6),
but our results suggest that it does not fully explain the distribu-
tional patterns of child language. This conclusion is congruent with
research in statistical grammar induction and parsing (25). Statis-
tical parsers make use of a wide range of grammatical rules. The
verb phrase (VP) “drink water” may be represented in multiple
forms, ranging from categorical (VP→V NP) to lexically specific
(VP→Vdrink NP) or bilexically specific (VP→Vdrink NPwater),
which corresponds to specific word combinations suggested for
child language. When tested on novel data, it has been shown that
generalization power primarily comes from categorical rules and
that lexically specific rules offer very little additional coverage
(26). Taken together, these results suggest that in language ac-
quisition, children must focus on the development of general rules
rather than the memorization and retrieval of specific strings.
Finally, the quantitative demonstration that children but not

primates use a rule-based grammar has implications for research
into the origin of language. Young children spontaneously ac-
quire rules within a short period, whereas chimpanzees appear to
show only patterns of imitation even after years of extensive
training. The continuity between the ontogeny and phylogeny of
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Fig. 1. Syntactic diversity in human language (A), memory-based learning model (B), and Nim Chimpsky (C) (details of the data are provided in SI Text). The
diagonal line denotes identity; close clustering around it indicates strong agreement. For humans and Nim, the model predictions are made on the as-
sumption that category combinations are independent. For the memory-based learner, the model prediction is based on frequency-dependent storage and
retrieval. Only human data are consistent with a productive grammar (ρc = 0.977). Both the memory-based learning model (P < 0.002) and Nim (P < 0.004)
show significantly lower diversity than expected under a grammar.
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language, frequently alluded to in the gradualist account of
language evolution (2–5), is not supported by the empirical data.

Theories that postulate a sharp discontinuity in syntactic abilities
across species (27) appear more plausible.
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Data and Empirical Methods
The child language data are drawn from the publicly available
CHILDES database (1). Six children (“Adam,” “Eve,” “Naomi,”
“Nina,” “Peter,” and “Sarah”) are selected; these are the only
American English-learning children in the public domain whose
data start at the very beginning of syntactic combinations and
make up sufficiently large samples for statistical analysis. The age
spans of these children are given in Table S1. The data are pro-
cessed using a state-of-the art part-of-speech (POS) tagger (http://
gposttl.sourceforge.net). The Brown Corpus is publicly available
with words already annotated with POSs. All determiner-noun
pairs are extracted from the tagged word sequences in which the
first word is a determiner (“a” or “the”) and the second word is
tagged as a singular noun. In addition, I pooled the first 100, 300,
and 500 determiner-noun pairs produced by each child to create
three composite learners, which collectively represent the very
earliest data on child language in the public domain. The ages
(year and month) of the children at these cutoff points are: Adam
(2;6, 2;9, 3;0), Eve (1;8, 1;11, 2;1), Naomi (2;0, 2;7, 2;11), Nina
(1;11, 2;0, 2;1), Sarah (2;8, 3;1, 3;3), and Peter (2;0, 2;1, 2;2).
These children are clearly at variant stages of language devel-
opment, all of which are well explained by the statistical model
developed here. Nim’s sign combination data are taken fromwork
by Terrace (2).

Zifp’s Law and Language
Under a perfect fit of Zipf’s law, word ranks and frequencies have
the slope of −1.0 on the log-log scale. Studies across languages
and genres strongly confirmed the accuracy and universality of
Zipf’s law (3). For the child language data used here, the average
slope of the linear fit is −0.98, again pointing to the accuracy of
Zipf’s law. Thus, I can approximate the marginal probabilities of
words using Eq. 1: that a word with a rank r in a sample of N
words has a probability of 1/(rHN), where HN is the harmonic
number

PN
i=11=i.

As noted in the main text, only 25.2% of singular nouns in the
Brown Corpus appear with both “a” and “the.” Similar patterns
hold for children’s speech data. On average, 22.8% of the nouns
in each sample appear with both “a” and “the.” For these, the
more vs. less favored determiner has an average frequency ratio
of 2.54:1. The identity of the favored determiner varies from
noun to noun, as the example of “bath/bathroom” from the main
text makes clear.
These results suggest that Zipf’s law characterizes the fre-

quencies of words as the propensities of word combinations.

Statistics of Grammar
The calculation uses the determiner-noun example but is ap-
plicable to any combinations of linguistic units. A productive
rule “NP→DN,” where NP is a noun phrase, D is a determiner,
and N is a noun, means that the combination of categories
(determiner and noun) is independent. Let the marginal
probability of drawing the noun nr, 1 ≤ r ≤ N in each trial be pr,
and let that of drawing the ith determiner be di. The expected
probability of nr being drawn with both determiners, Er, is
as follows:

Er = 1−Prfnr not sampled during S trialsg

−
XD

i= 1
Prfnr sampled ith determiner exclusivelyg

= 1− ð1− prÞS

−
XD

i= 1

h
ðdipr + 1− prÞS − ð1− prÞS

i

The last term above requires a brief comment. The indepen-
dence of determiner-noun combinations under the rule means
that the probability of the noun nr following the ith determiner
is the product of their probabilities, or dipr. The multinomial
expression

ðp1 + p2 + . . . + pr− 1 + dipr + pr+ 1 + . . . + pNÞS

gives the probabilities of all the compositions of the sample, with
nr combining with the ith determiner 0, 1, 2, . . . S times, which
is (dipr + 1 − pr)S because (p1 + p2 + . . .+pr−1 + pr + pr+1+. . .
+pN) = 1. However, this value includes the probability of nr
combining with the ith determiner zero times; again (1 − pr)S,
which must be subtracted. Thus, the probability with which nr
combines with the ith determiner exclusively in the sample S is
[(dipr + 1 − pr)S − (1 − pr)S].
The average of the entire sample is Eq. 2, repeated below:

E½D$ = 1
N

XN

r= 1
Er

Child Language, Grammar, and the Memory Model of
Language Learning
The data and the syntactic diversity measures are provided in
Table S1. The results from the memory-based learning model,
which implements a suggestion in the study by Tomasello (4), are
included there also.
High diversity of determiner-noun combinations can only be

obtained when more nouns are sampled more than once so that
they may have an opportunity to combine with multiple deter-
miners. If noun probabilities follow Zipf’s law (3), S/HN nouns
are expected to occur more than once, and the average diversity
over all N nouns is thus positively correlated with S/(NHN),
which is approximately S/(N ln N) because HN ≈ ln N [a similar
analysis is given in a study by Valian et al. (5)]. Given the slow
asymptotic growth of ln N, the ratio S/N (average number of
times a noun is used in the speech sample) predicts the diversity
measure. This is strongly confirmed (ρ = 0.985, P < 10−5) for the
data in Table S1.

Nim’s Sign Combinations
Nim’s two sign combinations are grouped into eight potential
rules (2). Each rule consists of a closed class functor (one of two
words, such as “more” and “give”) followed or preceded by an
open class item, generating patterns such as “more apple,” “give
apple,” and “more ball.” The theoretical value of diversity is
calculated assuming the combination of the two categories in the
rule is independent.
An alternative calculation ignores the word order restrictions

in Nim’s constructions; for instance, an open class item “banana”
is considered to have been paired with “more” and “give” re-
gardless of their relative positions. There are now four instead of
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eight constructions. Doing so increases the sample size for each
construction, but the increase in the types of open class items is
very modest. Consequently, Nim’s combinatorial diversities for
constructions without word order are 46.5%, 68.6%, 94%, and
60%, respectively, whereas the expected values are 90.7%, 99.9%,
99.9%, and 80.9%, respectively. It seems clear that Nim’s pro-
ductivity still falls far short of what could be expected of a pro-

ductive combinatorial system, even if I relax the restrictions on
word order.
The disproportionally large sample size over few types accounts

for Nim’s much higher diversity values than those of human
subjects. If Nim imitated his teachers’ sign combinations as sug-
gested by Terrace et al. (6), Nim had ample opportunities to copy
from his (productive) sign language teachers.
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Table S1. Empirical values of syntactic diversity in human language compared with theoretical
values of a productive grammar model and a memory-based learning model

Subject Sample size Types Theoretical, % Empirical, % Memory model, %

Naomi (1;1–5;1) 884 349 21.8 19.8 16.6
Eve (1;6–2;3) 831 283 25.4 21.6 16.0
Sarah (2;3–5;1) 2,453 640 28.8 29.2 24.5
Adam (2;3–4;10) 3,729 780 33.7 32.3 27.5
Peter (1;4–2;10) 2,873 480 42.2 40.4 25.6
Nina (1;11–3;11) 4,542 660 45.1 46.7 28.6
First 100 600 243 22.4 21.8 13.7
First 300 1,800 483 29.1 29.1 22.1
First 500 3,000 640 33.9 34.2 25.9
Brown Corpus 20,650 4,664 26.5 25.2 n/a

The notation X;Y indicates the child’s age (year and month). The Brown Corpus is also examined for com-
parison. The agreement between the theoretical and empirical values (columns 4 and 5) is statistically significant
(concordance correlation coefficient ρc = 0.977, 95% confidence interval: 0.925–0.993). The final column shows
the simulation results (averaged over 1,000 trials) of the memory model described in SI Text, which are signif-
icantly lower than the empirical values (P < 0.002, paired one-tailed Mann–Whitney test). n/a, not applicable.

Table S2. Empirical values of syntactic diversity in Nim’s eight sign combination patterns
compared with theoretical values if the combinations are independent

Rule Sample size Types Theoretical, % Empirical, %

(morejgive) X 1,215 67 88.0 44.8
X (morejgive) 256 39 59.9 35.9
Verb (mejNim) 800 14 99.9 78.6
(mejNim) verb 158 13 87.4 46.1
Food-item (mejNim) 775 18 99.7 88.9
(mejNim) food-item 261 14 94.9 85.7
Nonfood-item (mejNim) 180 20 75.9 70.0
(mejNim) nonfood-item 99 19 57.2 36.8

The empirical values are significantly lower (P < 0.004, paired one-tailed Mann–Whitney test).
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