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Abstract

Given a small number of examples of scene-
utterance pairs of a novel verb, language learners
can learn its syntactic and semantic features. Syn-
tactic and semantic bootstrapping hypotheses both
rely on cross-situational observation to hone in on
the ambiguity present in a single observation. In
this paper, we cast the distributional evidence from
scenes and syntax in a unified Bayesian probablistic
framework. Unlike previous approaches to model-
ing lexical acquisition, our framework uniquely: (1)
models learning from only a small number of scene-
utterance pairs (2) utilizes and integrates both syn-
tax and semantic evidence, thus reconciling the
apparent ’tension’ between syntactic and seman-
tic bootststrapping approaches (3) robustly handles
noise (4) makes prior and acquired knowledge dis-
tinctions explicit, through specification of the hy-
pothesis space, prior and likelihood probability dis-
tributions.

Learning Word Syntax and Semantics
Given a small number of examples of scene-utterance
pairs of a novel word, a child can determine both the
range of syntactic constructions the novel word can
appear in and inductively generalize to other scene
instances likely to be covered by the concept repre-
sented (Pinker 1989). The inherent semantic, syn-
tactic, and referential uncertainty in a single scene-
utterance pair is well-established (c.f. Siskind 1996).
In contrast, with multiple scene-utterance pairs, lan-
guage learners can reduce the uncertainty of which
semantic features and syntactic features are associ-
ated with a novel word.

Verbs exemplify the core problems of scene-
utterance referential uncertainty. Verbs selectively
participate in different alternation patterns, which
are cues to their inherent semantic and syntactic
features (Levin 1993). Verbs which pattern together
in the same constructions are commonly believed to
have similar syntactic and semantic features. How
are these features of words acquired, given only pos-
itive evidence of scene-utterance pairs?

The syntactic bootstrapping hypothesis (Gleitman
1990) is that learners exploit the distribution of
“syntactic frames” to constrain possible semantic
features of verbs. If a learner hears /glip/ in frames
of the form /X glipped G with F/ and rarely hears

/X glipped F into G/, the learner can with high con-
fidence infer /glip/ to be in the same verb class as
/fill/ and have the same sort of meaning. A dif-
ferent distribution informs the learner of a different
verb class. Considerable evidence has mounted in
support of this hypothesis (c.f. Naigles 1990, Fisher
et al 1994). In contrast, the semantic bootstrapping

hypothesis (Pinker 1989) is that learners use what
is common across scenes to constrain the posssible
word argument structures. If a learner sees a liquid
undergoing a location change when /X glipped F/ is
uttered, then /glip/ is likely to be in the same verb
class as /pour/ and have the same sort of meaning.

Both hypotheses require the distribution of cross-
situational observations. Prior accounts to model
word learning have either ignored the essential role of
syntax in word learning (Siskind 1996, Tenenbaum
and Xu 2000), or require thousands of training ob-
servations (Regier et al 2001) to enable learning. In
this paper we present a Bayesian model of learning
the syntax and semantics of verbs that overcomes
these barriers. We show what can be inferred from
1 example alone and how each additional example
reduces the uncertainty of what the syntactic and
semantic features can be.

Learning One Syntactic Feature
We illustrate our approach with a Bayesian analysis
of a single feature. In the causative alternation there
are two “frames” F0 and F1:

F0: Y Ved.
F1: X Ved Y.

Verbs possess a cause feature which may be valued
0, 1, or *: (Harley & Noyer 2000)

1 Externally caused - Ex: touch, load

F1: He touched the glass.
F0: *The glass touched.

* Externally causable - Ex: break, fill

F1: He broke the glass.
F0: The glass broke.

0 Internally caused - Ex: laugh, glow

F1: *He laughed the children.
F0: The children laughed.

Assuming this analysis, learners who hear utterances
containing a novel verb, not knowing the value of its
cause feature, must choose between 3 distinct hy-
potheses H0, H1, and H§. Clearly, one utterance



cannot uniquely determine the value of the feature.
If learners hear F1 (/X Ved Y/), the feature sup-
ports H1 or H§. Similarly, if learners hear F0 (/Y
Ved/), the feature may be H0 or H§. Two utter-
ances cannot determine the feature uniquely either.
Learners might receive both F1 and F0, supporting
H§ uniquely. But they may also accidentally receive
2 utterances of the same form F0, F0 or F1, F1, thus
not resolving the ambiguity. If learners received 6
utterances of the same form F0 or F1, then there is
overwhelming support for H0 or H1 respectively.

A Bayesian analysis renders the above analysis
precise and quantitative. Knowledge is encoded in
three core components: (1) the structure of the hy-
pothesis space H (2) the prior probability p(Hi) on
each hypothesis Hi 2 H, without having any evi-
dence, and (3) the likelihood of observing evidence
X given a particular Hi, p(X|Hi). Given evidence
X of independent observations x1, . . . , xN , by Bayes’
rule the posterior probability of a particular hypoth-
esis Hi is:

p(Hi|X) =
QN

j=1 p(xj |Hi)p(Hi)
p(x1, . . . , xN )

(1)

signaling the support for a particular hypothesis
given evidence. In our case, xj is the observation
of a syntactic frame (F0 or F1), and X is a sequence
of syntactic frames. For example, one prior proba-
bility model p(Hi) has each of the 3 hypotheses are
equally likely, encoding no information:

p(H1) = p(H0) = p(H§) =
1
3

(2)
and a likelihood model p(xj |Hi) encoding a 5% er-
ror rate in observation of frames for the 3 different
feature values:

p(xj = F1|H1) = .95 p(xj = F0|H1) = .05
p(xj = F1|H§) = .50 p(xj = F0|H§) = .50 (3)
p(xj = F1|H0) = .05 p(xj = F0|H0) = .95

Both of these are stipulated, encoding a learner’s
prior knowledge of the world. Given these proba-
bility models, this allows for explicit computation of
the support of each hypothesis:

Evidence X p(H1|X) p(H§|X) p(H0|X)
F0 .033 .333 .633
F0, F0 .002 .216 .781
F0, F1 .137 .724 .137
F0, F1, F1, F1, F1, F1 .712 .288 5e-6
F0, F0, F0, F0, F0, F0 2e-8 .021 .979
F0, F1, F0, F1, F0, F1 .007 .986 .007

Given this framework, just one or two observations
is sufficient to make an informed judgement. Note
that each additional observation increases certainty,
and noise is handled gracefully.

Learning Multifeature Concepts
We now extend the single feature analysis to mul-
tiple features. Suppose learners encounter N utter-
ances of /X is glipping Y/. From syntax alone, we
can compute the probability that the cause feature is
0, 1, or *, but little else. However, when paired with
scenes (from any modality, whether visual, auditory,

emotional, and the like), additional information is
available. The previous section showed how to learn
the value of 1 feature, which happened to be a syn-
tactic cause feature with 3 possible values. Multiple
features can be combined together to form a larger
hypothesis space. M 3-valued features constitute a
3M size hypothesis space.

Setting aside verbal aspect, verb meanings as M
features, each feature being some predicate on one
or more of the essential arguments of the verb. Ex-
amples of possible predicates may be:

Cause(e)
One argument x: moving(x), rotate(x), movingdown(x),

movingup(x), supported(x), liquid(x), container(x)

Two arguments x, y: contact(x, y), support(x, y), attach(x, y)

A verb like /lower/ may have most of the probabil-
ity distribution weighted on H1°1§101§§°11§, /raise/
on H1°1§101§§°11§, /rise/ on H0°1§01§§§, /fall/ on
H0°1§10§§. Selectional predicates (e.g. liquid(x),
container(x)) are no different than other predicates.

The task of learning a verb’s meaning, given N
observations X = x1, . . . , xN of scenes, is to deter-
mine the posterior probability distribution p(Hi|X).
Given a prior distribution on hypotheses p(Hq

i )
(q=No of ’dont-cares’ in Hi) and a likelihood dis-
tribution of generating a particular p(xm) example
given the hypothesis Hq

i :

p(Hq
i ) =

1
3M

(4)

p(xm|Hq
i ) =

Ω
1
2q

if xm 2 Hi

0 otherwise (5)

we can use Bayes’ rule (Eq 1) to compute the likeli-
hood of any hypothesis given N independent exam-
ples. Suppose we observe different sets of N samples,
X, in a reduced hypothesis space where M=3. Then
there are 27 possible concepts:

q No H
i

Concepts
0 8 000, 001, 010, 011, 100, 101, 110, 111
1 12 00*, 01*, 10*, 11*, 0*0, 0*1,

1*0, 1*1, *00, *01, *10, *11
2 6 0**, *0*, **0, 1**, *1*, **1
3 1 ***

Given scene observations X, we can directly com-
pute the posterior probability p(Hi|X) of any of the
27 different concepts, 4 shown here:

Observation X: H000 H00§ H0§§ H§§§
000 .30 .15 .07 .03
000, 001 .00 .64 .16 .04
000, 001, 000 .00 .79 .10 .01
000, 001, 000, 001, 000 .00 .94 .03 .001
000, 000, 000 .70 .09 .01 .001
000, 101, 010, 111, 000 .00 .00 .00 1.0

Just as in the one feature case, each example further
reduces ambiguity over the possible concepts. Be-
cause knowledge is embedded in the prior and likeli-
hood models, generalization is possible from very lit-
tle evidence. This lower dimensionality is the source
of inferential power.



Learning Lexeme Features
We now combine the two sources of information, syn-
tactic and semantic, in a richer setting. Learning a
novel word involves learning both types of features
from utterance-scene pairs – syntactic features pri-
marily from the utterance, semantic features primar-
ily from the scene, but not exclusively. To illustrate
our methodology, we will suppose a language learner
has perfect knowledge of everything except the syn-
tactic features and semantic features of a novel verb
– e.g. word order, arguments, spatial and tempo-
ral reference – anticipating similar analyses can ap-
ply to handle these and other sources of uncertainty.
We use a rudimentary form of minimalist operations
(Chomsky 2000), although this is not essential to
this approach.

A lexical item, possessing semantic and syntactic
features, can merge with any other lexical item
via a primitive operation Merge. When Merge
events occur, the operation Agree (Chomsky 2000)
checks features of both items to ensure that they
match. A failure to match blocks the derivation,
while a valid derivation must have all its features
checked. Lexical items in a derivation in progress
become inactive when their features are checked.
For any given feature, there are 4 possible values:
[0] - valued, with value 0
[1] - valued, with value 1
[*] - unvalued, to be valued by derivation end
[-] - no value

with corresponding hypotheses H0, H1, H§, H°.
For example, to derive /the glass/ the following two
entries undergo Merge: (n=noun, d=determiner,
def=definiteness)

/the/ n:[*] d:[1] def: [1]
/glass/ n:[1]

and an unvalued feature of /the/ becomes valued.
Derivation /the the/ crashes due to an unvalued n

feature. The result can merge with /see/ to generate
/see the woman/.

Verbs which require a prepositional phrase (PP)
argument have an unvalued feature, of the same type
in common as the P. For example, /put/ has an un-
valued loc feature (marked with *) which must get
valued by /onto/:

/put/ cause:[1], dir:[1], loc:[*]
/onto/ loc:[1], contact:[1], dir:[1], fg:[1], . . .

so as to generate /He put the books onto the shelf/
but not */He put the books/.

Verbs which optionally take a particular prepo-
sitional complement have a valued feature that
agrees with the P. For example, /run/ has a
valued dir feature which can agree with /into/:
/into/ dir: [1], b: [1], term: [1], loc: [1], fg: [1]
/run/ cause: [0], dir: [1]

so as to derive /He ran/ and /He ran into the room/.
Likewise, the selectional criteria of load/pour/fill
works through specification of the familiar “figure-

ground” feature fig (1 if figure in Spec, 0 if ground
in spec of P):

/load/ fig:[-]
/fill/ fig:[0] con:[1]
/pour/ fig:[1] liq:[1]

This fig feature is not specified for the verb class
where both alternations are possible (e.g. load),
but is valued 0 or 1 for the other 2 classes so as
to agree with the preposition (/pour/ with locative
prepositions such as /onto/, /cover/ with /with/).
A considerable number of English verb alternation
classes pattern in trios like this (see Levin 1993,
Nomura et al 1994). We will assume that there
is agreement between verb features and preposition
features, where we assert one of many possible anal-
yses: (loc=transfer of location, pos=transfer of pos-
session, fig=figure in specifier of P, dir=dynamic,
bnd= bounded, ter=terminal, con=container at ter-
minal, cnt=contact)

loc pos fig dir bnd ter con cnt
/on/ 1 - 1 - - - - 1
/onto/ 1 - 1 1 1 1 - 1
/off/ 1 - 1 - - - - 0
/in/ 1 - 1 - - - 1 -
/into/ 1 - 1 1 1 1 1 -
/with/ 1 1 0 1 - - - -
/from/ - - 1 1 1 0 - -
/of/ - 1 0 1 - 0 - -
/to/ 1 - 1 1 1 1 - -
/toward/ 1 - 1 1 0 1 - 1

The exact semantics of the features and their values
are not relevant, only that they may be differentiated
from each other.

Given this feature set, suppose a learner hears /He
glipped the glass with water/ The probe is a novel
verb /glip/ and the goal’s features in /the glass with
water/ are known. Because /water/’s features are
not active, the relevant features are from /the glass/
and /with/:

/the glass/ d:[1] con: [1] n: [1]
/with/ n:[*] loc:[1] fig:[0] pos:[1] dir:[1]

Importantly, note that one observation is insuffi-
cient to infer whether /glip/ has a fig:[0] feature (or
con:[1], and so forth), as it is also possible that /glip/
has fig:[*] or fig:[-], etc. With a likelihood model on
agreement, for each feature dimension (fig, loc, con,
etc.), a learner can compute a probability distribu-
tion of the four possible hypotheses. Given two items
that Merge, an unknown probe verb P and a goal G,
the joint probability distribution p(P, G) for the 16
possibilities encodes knowledge that P and G must
be in agreement with high probability:

p(P,G) P=0 P=1 P=- P=*
G=0 .165 .0025 .1225 .0825
G=1 .0025 .165 .1225 .0825
G=* .0025 .0025 .0025 .0025
G=- .08 .08 .0025 .08

Without such knowledge, inference is not possible.
The above distribution encodes both the prior dis-

tribution on P:
p(P = 0) = p(P = 1) = p(P = §) = p(P = °) =

1
4

(6)



and the conditional distribution p(P |G):
p(P = G|G = 0, 1) = .443 (7)

p(P 6= G|G = 0, 1) = .007 p(P = 0, 1|G = °) = .327

p(P = §|G = 0, 1) = .329 p(P = §|G = °) = .001

p(P = °|G = 0, 1) = .221 p(P = °|G = °) = .337
If we assume perfect knowledge of a feature of the
Goal (i.e. the complement), then over multiple ob-
servations, the distributional evidence in support of
the 4 Probe hypotheses (i.e. of the verb) can be
readily integrated. Suppose a learner gets 4 utter-
ance frames of /glip/, for example. If all 4 of the ut-
terances are of the form /X Ved Y with Z/ then this
is equivalent to having the Goal indicate 4 perfect
observations of fig:[0], which we annotate as 0000.
Then the likelihood p(X|P ) and posterior probabil-
ity p(P |X) of the 4 possible hypotheses can be eval-
uated directly via Bayes’ rule:

Likelihood p(X|P ) Posterior p(P |X)
p(X|P = 0) = (.443)4 p(P = 0|X) = .732
p(X|P = 1) = (.007)4 p(P = 1|X) = .000
p(X|P = §) = (.329)4 p(P = §|X) = .222
p(X|P = °) = (.221)4 p(P = °|X) = .046

We can test how different distributions of syntac-
tic frames correctly yield different probability distri-
butions of syntactic features, amounts to Gleitman
(1990) “syntactic bootstrapping” :

Utterances (X) 0 1 § °
4 /X Ved Y with Z/ (0000) .732 .000 .222 .046
4 /X Ved Y/ (----) .319 .319 .000 .361
2 /X Ved Y with Z/,
2 /X Ved Y into Z/ (0011) .001 .001 .828 .170

2 /X Ved Y/,
2 /X Ved Y with Z/ (--00) .789 .000 .000 .210

As the number of examples increases, the evidence
supports “all-or-none” or “rule-like” behavior, even
in the presence of noisy frames:

Utterances (X) 0 1 § °
23 /X Ved Y with Z/ (0)
1 /X Ved Y into Z/ (1)
1 /X Ved Y/ (-)

.998 .000 .002 .000

16 /X Ved Y with Z/ (0)
8 /X Ved Y into Z/ (1) .000 .000 .998 .002

10 /X Ved Y with Z/ (0)
1 /X Ved Y into Z/ (1)
14 /X Ved Y/ (-)

.953 .000 .000 .047

1 /X Ved Y with Z/ (0)
1 /X Ved Y into Z/ (1)
23 /X Ved Y with Z/ (-)

.028 .028 .000 .944

The analysis above assumes perfect knowledge of the
Goal, but we can relax this condition as well. If
we do not have perfect knowledge of the Goal, and
instead have only probability distributions on fea-
ture values of both Probe (verb) and Goal, then we
can condition each computation on every probe-goal
possibility given the current probability distribution,
and improve the probability model for both, exam-
ple by example.

As the above analysis demonstrates, it is possi-
ble to derive the semantics of one lexical item from
the features of another item from utterances alone.
However, utterance and scenes “agree” as well, and
this regularity may be exploited.

Given N independent utterance-scene pairs X:
X = [(s1,u1), . . . , (sN ,uN )] (8)

the two sources of evidence can be combined inde-
pendently to compute p(Hi|X):

p(Hi|X) =
Q

i p(si|Hi)p(ui|Hi)p(Hi)
p(X)

(9)

In what follows, we will continue to assume that we
have perfect information about word order, nouns,
prepositions, and the like. This assumption about
prior syntactic knowledge may be relaxed. Consider
the following perceptually-derived semantic features:

Scene s Description/Semantic Features
pour-fill Person pouring water into a glass, filling it
G001 Glass: Manner: None (0) State: Full (1)
W110 Water: Manner: Pouring (1) State: None (0)
splash-fill Person splashes water into a glass, filling it
G001 Glass: Manner: None (0) State: Full (1)
W120 Water: Manner: Splashing (2) State: None (0)
spray-fill Person sprays water into a glass, filling it
G001 Manner: None (0) State: Full (1)
W130 Manner: Spraying (3) State: None (0)
pour-empty Person pouring water out of glass, emptying it
G002 Manner: None (0) State: Empty (2)
W110 Manner: Pouring (1) State: None (0)
splash-empty Person splashes water out of glass, emptying it
G002 Manner: None (0) State: Empty (2)
W120 Manner: Splashing (2) State: None (0)
pour-none Person pouring some water into a glass
G000 Manner: None (0) State: None (0)
W110 Manner: Pouring (1) State: None (0)
spray-none Person sprays water into a glass
G000 Manner: None (0) State: None (0)
W130 Manner: Spraying (3) State: None (0)

and possible syntactic “frames”:
Utterance u Attention
/Glipping!/ --- –
/X glipped water from a glass/ 1-- W
/X glipped water into a glass/ 1-- W
/X glipped water/ --- W
/X glipped a glass with water/ 0-- G
/X glipped a glass/ --- G

where features are ordered as:
fig, manner-of motion, change-of-state

For expository purposes we can consider how the
learner would rank each of the 6 hypotheses, assum-
ing they only entertain just the following:

English Verb Hypothesis Feature
pour H

pour

11-
spray H

spray

12-
splash H

splash

13-
fill H

fill

0-1
empty H

empty

0-2
move H

move

1--

For each feature dimension, learners may have dif-
ferent priors on features having particular values.
We consider by way of example a prior p(sj) struc-
tured as:

p(sj = 0) = (1° dj±), p(sj 6= 0) = ± (10)
where for small ±, the prior holds that usually, scenes
have 0 for the jth dimension (d1 = 3, d2 = 4, d3 =
4). Observing pouring, spraying, splashing manners
(s2 = 1, 2, or3), and observing filling, emptying, or
breaking change-of-states (s3 = 1, 2, or3) is far less
likely than observing no manner of motion (s2 = 0)
or change of state (s3 = 0) at all. Since observing



Evidence X Verb-Concept Mapping p(H
i

|X)
Situation Scene S Utterance U H

pour

H
spray

H
splash

H
fill

H
empty

H
move

1 pour-fill {G001, W110} /X glipped water into a glass/ (1–) .880 .010 .010 .000 .000 .101
2 pour-fill {G001, W110} /X glipped glass with water/ (0–) .000 .000 .000 .989 .011 .0001
3 pour-fill {G001, W110} /Glipping!/ (—) .463 .006 .006 .463 .005 .058
4 none /X glipped water into a glass/ (1–) .246 .246 .246 .004 .004 .254
5 none /X glipped glass with water/ (0–) .007 .007 .007 .485 .485 .007
6 none /Glipping!/ (—) .166 .166 .166 .166 .166 .170
7 pour-fill {G001, W110} /Glipping!/ (—)

pour-empty {G002, W110} /X glipped water from the glass/ (1–) .998 .000 .000 .000 .000 .002
pour-none {G000, W110} /X glipped water/ (—)

8 pour-fill {G001, W110} /Glipping!/ (—)
splash-fill {G001, W120} /X glipped a glass with water/ (0–) .000 .000 .000 .999 .000 .000
spray-fill {G001, W100} /X glipped a glass/ (—)

9 pour-fill {G001, W110} /Glipping!/ (—)
splash-empty {G001, W120} /X glipped water/ (—) .061 .066 .066 .000 .000 .806
spray-none {G001, W100} /X glipped water/ (—)

Figure 1: Word concept mapping p(Hi|X), given scene-utterance evidence X of a novel verb, /glip/

a different value sj 6= 0 is unlikely to have occurred
by accident, it may be an important feature to the
concept.

The likelihood p(s|Hi) for each of the D indepen-
dent dimensions (D = 3):

p(s = s1 . . . sD|Hi) =
DY

j=1

p(sj |Hi) (11)

where we allow each feature of s to be in the concept
with probability 1° ≤ and inconsistent with ≤:

p(sj |Hi) =

8
<

:

1° ≤ if sj = Hij , Hij 2 {0, . . .}
≤p(sj) if sj 6= Hij , Hij 2 {0, . . .}
p(sj) if Hij 2 {§,°}

Conceptually, this says if we knew with absolute
certainty that the hypothesis was in fact Hi (e.g.
Hpour), then most of the scenes s we observe will
contain pouring in them; if they don’t contain pour-
ing in them, then the kind of scenes that will be
observed instead will be “generic”. In our examples,
≤ = .1; qualitatively, results are not aren’t sensitive
to small changes in epsilon.

Suppose, as in Situation 1 of Figure 1, a learner
is given a single scene-utterance pair (pour-fill, /X
glipped the water into the glass/): X = (s1 =
{G110,W110}, u1 = 1°°,W ), and we wish to com-
pute p(Hi|X) for all Hi 2 H. We assume the learner
can attend to the argument so as to extract rele-
vant features (if not, it is as if no scene informa-
tion is available). So for a particular hypothesis
Hpour = H11°:
p(X|H11°) = p(s1 = {G110, W110}|H11°)p(u1 = 1°°|H11°)

= p(s = W110|H11°)p(P=1|G=1)p(P=-|G=1)p(P=-|G=-)

= (.9)2(.7)(.443)(.327)(.337)

The likelihood function p(X|Hi) can be computed
for each of the 6 hypotheses, weighted by p(Hi),
and normalized to compute the posterior probability
p(Hi|X):

H
i

Likelihood p(X|H
i

) p(H
i

|X)
H

pour

(.9)(.9)(.7)(.443)(.327)(.337) .880
H

spray

(.9)(.1.1)(.7)(.443)(.327)(.337) .001
H

splash

(.9)(.1.1)(.7)(.443)(.327)(.327) .001
H

fill

(.1.1)(.1)(.7.1)(.007)(.337)(.327) .000
H

empty

(.1.1)(.1)(.7.1)(.007)(.337)(.327) .000
H

move

(.9)(.1)(.7)(.443)(.337)(.337) .101

This is also shown in figure 1. As expected, given the

scene pour-fill paired with utterance /X glipped the
water into the glass/, a learner with the above model
should rationally conclude that the most likely hy-
pothesis is in fact Hpour.

In Situation 2, the scene is the same, but now the
syntax /X glipped the glass with water/ provides the
learner with the information to attend not to the
water’s manner-of-motion but to the glass’ change
of state. Given X = [s = {G110}, u1 = 0°°, G]) a
similar computation yields that the most likely hy-
pothesis is Hfill, shown in figure 1.

In Situation 3, the scene is the same, but now
the syntax /Glipping!/ gives the learner less infor-
mation, since the argument in the scene that the
speaker may be referring to is unknown: X = (s1 =
(G110,W110), u1 = °°°) If there are A arguments
in the scene, the speaker must have had a particular
argument z in mind. The learner must condition on
all the possibilities of z:

p(s|Hi) =
AX

a=1

p(s|Hi, za)p(za) (12)

If learners consider all arguments equally salient
(p(zi) = 1

A ) then this effectively models /Glipping!/
as equivalent to /X is glipping Z1/ with probability
p(z1) = .5 and /X is glipping Z2/ with probability
p(z2) = .5. For simplicity, we assume A = 2 where
Z1 is water, Z2 is the glass – but further referential
uncertainty can be modeled with higher A.
p(s = {G001, W110}|Hi

) = .5p(s = W110|Hi

) + .5p(s = G001|Hi

)

yielding different likelihood and posterior estimates,
shown in figure 1.

In situation 4 through 6, the same syntactic
frames are provided as in situations 1 through 3,
but without the scene information. When some syn-
tactic information is provided by the frame (situa-
tion 4, /X is glipping water into a glass/), then the
manner-of-motion locative verbs are preferred over
the change-of-state locative verbs, but no differenti-
ation is possible without the scenes. Likewise, when
the frame provides the opposite cue (situation 5, /X
is glipping a glass with water/), the opposite pref-
erence is achieved, again with no differentiation be-



tween possible change-of-state verb concepts. When
absolutely no syntactic information is available (sit-
uation 6, /Glipping!/), all hypotheses prove equally
likely.

Whereas in situation 3 the verb-concept mapping
was ambiguous, primarily between Hpour and Hfill,
in situation 7 and 8, learners are provided 2 addi-
tional examples to disambiguate. Both the scenes
and syntactic frames in situation 7 support Hpour,
while in situation 8 the scenes and syntactic frames
support Hfill.

Finally, in situation 9, 2 different scene-utterance
pairs support a “superordinate” concept Hmove, but
not any “subordinate” manner-of-motion concept
Hpour, Hsplash, or Hspray.

Discussion
The reason why our analysis is able to infer so much
from so little evidence is because so much is embed-
ded in the given knowledge sources:

• the structure of the hypothesis space H. Our exam-
ples contained a small number of feature dimensions
and their possible values, but these may be specified
by interfaces to perceptual, motor, memory, or other
“theory” representations. If so, whether these are in-
nate or acquired are conditional on their source.

• priors p(H
i

) on hypotheses in H. We used equal
priors, but updating p(H

i

) (e.g. Manner vs. Path,
tight/loose-fit) based on language input is natural.

• priors p(s
j

) on scenes having feature values. We stip-
ulated static values of ≤, but this can be acquired from
observation.

• likelihood of scenes s given the word concept p(s|H
i

).
Again, this was stipulated, but could be acquired.

• perfect knowledge of the features of the argument
(Goal) G. We made this simplifying assumption to il-
lustrate the essential elements of our model, but learn-
ers must acquire these features in parallel.

• likelihood of agreement, p(P |G), between a feature of
a novel word P and its argument G. We speculate that
there is sufficient structure in partially learned words
so as to acquire the structure in the joint distribution
of feature values.

This richness of knowledge is in contrast to the
models employed by Regier et al (2001) and De-
sai (2001), who train connectionist neural networks
so as to learn the word-scene associations for ad-
jectives/nouns and verbs respectively. The high di-
mensionality of their model forces the need for thou-
sands of training trials, and the interpretation of the
weights is notoriously difficult. The assumptions
behind these models are not justified by these au-
thors. In contrast, our Bayesian approach make the
hypotheses, priors, and likelihoods explicit, holding
this structure to be central.

Siskind (1996) views lexical acquisition as con-
straint satisfaction, and offers a robust algorithm
where the mapping between input and hypothesis
space is accomplished by pruning hypotheses that do
not occur cross-situationally. Provided an idealized
tokenization of the world, the algorithm does not

need a large number of examples. However, Siskind’s
algorithm does not contain any form of preference
between hypotheses. In contrast, our form of anal-
yses embeds preference information explicitly in the
prior p(Hi) and likelihood p(X|Hi) functions.

Tenenbaum and Xu (2000) take the important
step of putting word learning in the Bayesian frame-
work that we adopt here, showing how noun learn-
ing can occur with a small number of examples in a
continuous-variable input space.

Crucially however, each of the above models ig-
nore the constraining role of syntax, despite con-
siderable evidence that children use syntax to guide
their verb-concept hypothesis space (Gleitman 1990,
Naigles 1990, Naigles 1994, Fisher et al 1994,
Snedeker and Gleitman 2002). Qualitatively, our
models’ performance matches the preferences of
child learners.

Our use of statistics does not imply any commit-
ment to radical empiricism. Much prior knowledge
is stipulated: the structure of the hypothesis space,
the priors on hypotheses, and the likelihood of scene-
utterance pairs given the hypotheses. It is not spec-
ified whether these stipulations are innate or them-
selves learnable. Linguistics and lexical semantics
provide detailed theories of a much larger syntactic
and semantic hypothesis space, and nothing prevents
their inclusion in this framework.
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