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The	Neurobiological	Bases	for	the	Computational	Theory	of	Mind	

	
C.R.	Gallistel	

When	we	were	young,	Jerry	and	I,	so,	too,	was	the	computational	theory	of	mind,	
the	central	doctrine	of	cognitive	science.	It	broke	the	theoretical	fetters	imposed	by	
the	mindless	behaviorism	that	had	dominated	psychology,	philosophy	and	
behavioral	neuroscience	for	decades.	Jerry	was	making	major	contributions	to	
cognitive	science	by	spelling	out	its	implications.	Some	of	the	implications	seemed	
to	me,	then	and	now,	to	be	obvious,	but	only	after	Jerry	had	spelled	them	out.	

One	such	implication	was	that	the	mind	must	possess	(unconscious)	symbols	
and	(equally	unconscious)	rules	for	manipulating	them.	That	is,	it	must	have	a	
language	of	thought	(Fodor	1975),	just	as	do	computing	machines.	Because	the	
symbols	are,	on	the	one	hand,	objects	of	principled	manipulation—they	are	the	stuff	
of	computation—and	because,	on	the	other	hand,	some	of	them	refer	to	things	
outside	the	mind,	it	follows	that	the	language	of	thought	has	a	syntax	and	a	
semantics.	When	Jerry	pointed	this	out,	it	seemed	to	me	beyond	reasonable	dispute,	
although	it	has	in	fact	been	disputed,	even	unto	the	present	day	(Aydede	1977;	
Laurence	and	Margolis	1997;	Schneider	2009).	

What	I	found	thought	provoking	about	Jerry’s	insight	was	just	what	
connectionists	objected	to:	its	neuroscientific	implications.	If	one	believed	in	the	
computational	theory	of	mind,	then	the	symbols	and	the	machinery	for	
manipulating	them	must	have	a	material	realization	in	the	brain.	

The	problem	was	that	no	one	knew	what	it	might	be.	If	there	were	symbols,	then	
they	must	reside	in	memory,	because	the	basic	function	of	a	symbol	in	a	computing	
machine	is	to	carry	information	forward	in	time	in	a	computationally	accessible	
form	(Gallistel	and	King	2010).	Most	neuroscientists	were	and	are	unshakably	
committed	to	the	hypothesis	that	memories	consist	of	experientially	altered	
synaptic	conductances.	I	have	been	told	in	all	sincerity	that	this	hypothesis	could	not	
be	false.		Karl	Popper	would	turn	in	his	grave.	There	is,	however,	a	problem	with	this	
hypothesis:	synaptic	conductances	are	ill	suited	to	function	as	symbols	(Gallistel	and	
King	2010).	Anyone	who	doubts	this	should	ask	the	first	neuroscientist	they	can	
corner	to	explain	to	them	how	the	brain	could	write	a	number	into	a	synapse,	or	into	
a	set	of	synapses.	Then,	step	back	and	watch	the	hands	wave.	In	the	unlikely	event	of	
an	intelligible	answer,	ask	next	how	the	brain	operates	on	the	symbols	written	into	
synapses.	How,	for	example,	does	it	add	the	number	encoded	in	one	synapse	(or	set	
of	synapses)	to	the	number	encoded	in	a	different	synapse	(or	set…)	to	generate	yet	
another	synapse	(or	set…)	that	encodes	the	sum?	

Connectionists	disliked	the	language	of	thought	hypothesis	because	it	was	not	
readily	reconcilable	with	what	neuroscientists	told	them	was	the	material	
realization	of	memory.	However,	as	a	behavioral	neuroscientist,	I	knew	how	flimsy	
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the	evidence	for	the	synaptic	theory	of	memory	was	and	how	strongly	
neuroscientists’	belief	in	it	was	undergirded	by	the	associative	theory	of	learning.	
The	associative	theory	had—still	has—enormous	intuitive	appeal:	One	of	Lila	
Gleitman’s	many	bon	mots	is	that,	“Empiricism	is	innate.”	Moreover,	psychologists	
assured	neuroscientists	that	the	associative	theory	had	dominated	philosophical	
and	psychological	thinking	for	centuries,	which	is	an	historic	truth,	at	least	as	
regards	Anglophone	thought.	So,	how	could	this	theory	be	wrong?	As	a	psychologist	
who	had	focused	on	the	theory	of	learning	since	my	undergraduate	days	in	the	
laboratory	of	Tony	Deutsch,	I	knew	how	profoundly	flawed	the	theory	was—and	is.	

For	me,	the	synaptic	theory	of	memory	rested	on	circularly	reinforcing	set	of	
false	beliefs:	The	neuroscientists’	belief	in	the	synaptic	theory	of	memory	was	
sustained	in	no	small	measure	by	the	fact	that	it	accorded	with	the	psychologists’	
associative	theory	of	learning.	The	psychologists’	belief	in	the	associative	theory	of	
learning	was	sustained	in	no	small	measure	by	its	accord	with	what	neuroscientists	
took	to	be	the	material	realization	of	memory.	Knowing	this	circular	system	of	false	
beliefs,	I	was	not	tempted	to	follow	where	the	connectionists	wanted	to	lead,	which	
was	back	to	a	murky,	computationally	hopeless	associationism,	motivated	mostly	by	
a	misinformed	assessment	of	what	neuroscientists	really	new	about	the	material	
realization	of	memory—which	was	nothing.	

So,	if	symbols	don’t	reside	in	altered	synapses,	where	do	they	reside?	I	have	
argued	against	the	synaptic	theory	of	memory	for	decades,	with	no	noticeable	
impact	on	the	neuroscience	community.	My	audiences	always	pester	me	with	this	
question:	If	memory	is	not	enduring	changes	in	synaptic	conductances,	then	what	is	
its	physical	realization?	I	used	to	answer	that	I	had	no	idea,	but	my	audiences	did	
not	find	that	an	appealing		answer.	Nor	did	I.	Some	years	back,	I	began	to	have	some	
ideas,	but	I	was	loath	to	put	them	in	print,	for	fear	they	would	further	enhance	my	
reputation	for	preposterous	speculation.	Now,	however,	very	exciting	experimental	
work	in	behavioral	and	systems	neuroscience,	which	is	just	appearing,	provides	
empirical	support	for	at	least	the	general	thrust	of	these	ideas.	

Where	to	Find	the	Symbols	

We	have	been	looking	in	the	wrong	place—for	both	the	symbols	and	the	machinery	
that	operates	on	them.	The	symbols	are	not	in	the	synapses,	and	the	machinery	that	
operates	on	them	is	not	(primarily)	in	the	neural	circuits.	The	symbols	are	in	
molecules	inside	the	neurons,	and	the	machinery	that	operates	on	them	is	
intracellular	molecular	machinery.	

On	this	view,	each	neuron	is	a	computational	machine.	It	takes	in	information	
through	its	dendrites,	processes	that	information	with	complex	information	
processing	machinery	implemented	at	the	molecular	level	within	the	neuron	itself,	
and,	at	least	sometimes,	it	then	generates	a	signal	that	carries	the	encoded	results	of	
its	processing	to	other	neurons	by	means	of	a	patterned	train	of	nerve	impulses.	On	
other	occasions,	it	may	only	update	its	memories	and	not	send	out	any	signal.	
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Because	symbolic	memory	is	an	indispensable	component	of	any	computing	
machine	(Gallistel	and	King	2010),	the	molecular-level	information	processing	
machinery	inside	each	neuron	has,	as	one	of	its	most	basic	constituents,	molecules	
whose	form	may	be	altered	by	experience	in	such	a	way	as	to	encode	acquired	
information,	information	that	has	been	conveyed	to	the	cell	through	its	synaptic	
inputs.	These	intracellular	memory	molecules	carry	the	acquired	information	
forward	in	a	form	that	makes	it	accessible	to	the	molecular	computing	machinery.	

Insofar	as	neuroscientists	are	also	biologists,	they	have	known	for	decades	
where	in	the	brain	they	could	find	materially	realized	symbols	and	computational	
machinery	that	operates	on	them.	But	they	have	assumed—without	ever	discussing	
the	possibility—that	what	they	knew	about	the	genetic	machinery	in	every	cell	was	
not	relevant	to	the	question	of	the	material	basis	of	memory.	Anyone	familiar	with	
the	rudiments	of	molecular	biology	knows	that	(most)	codons1	are	symbols	for	
amino	acids.	And,	they	know	that	the	sequence	of	codons	between	a	start	codon	and	
a	stop	codon	is	a	symbol	for	a	protein.	If	they	have	been	following	the	evo-devo	
literature,	they	know	that	some	proteins	represent	highly	abstract	aspects	of	
organic	form,	such	as	anterior,	dorsal	and	distal	(Carroll	2005;	Shubin,	Tabin	et	al.	
2009),	while	others	represent	complex	organs,	such	as	eyes.	Non-biologists	are	
sometimes	startled	to	learn	that	there	is	such	a	thing	as	a	gene	for	an	eye;	turn	it	on	
and	you	get	an	eye	(Halder,	Callaerts	et	al.	1995;	Gehring	1998).	What	is	more	
amazing,	we	now	understand	how	this	is	possible.	The	old	saw	that	genes	cannot	
represent	complex	organic	structures	and	abstract	properties	of	a	structure	is	
simply	false;	they	can,	and	they	do.	

The	symbols	strung	out	along	the	double	helix	carry	inherited	information,	
information	about	what	worked	in	the	ancestors	of	the	current	carrier	of	that	
information.	These	symbols	are	organized	into	data	structures,	just	as	are	the	
symbols	in	the	memory	of	a	computer.	The	computational	principle	that	makes	this	
organization	possible	—the	indirect	addressing	of	stored	information—is	the	same	
in	the	nucleus	of	a	cell	as	it	is	in	a	computer	(Gallistel	and	King	2010).	Moreover,	the	
molecular	machinery	that	reads	the	information	and	uses	it	to	guide	organ	
construction	and	govern	cell	function	implements	the	logic	gates	that	are	the	
building	blocks	of	computational	machinery.	In	short,	the	DNA	symbols	carry	
information	in	a	form	that	makes	it	accessible	to	computation,	and	there	is	
molecular	machinery	that	performs	computational	operations	in	the	course	of	
reading	this	information.	Could	it	be	that	the	process	of	evolution	has	found	a	way	to	

																																																								
1	A	codon	is	a	reading-frame	triplet	of	nucleotides.	There	are	four	nucleotides.	During	the	
transcription	of	a	gene,	the	double	helix	is	read	in	the	sense	direction	along	the	sense	strand	
(as	opposed	to	the	antisense	strand)	in	nucleotide	triplets	(3-letter	words,	written	in	the	4-
letter	alphabet	of	nucleotides).	The	reading	frame	is	determined	by	the	nucleotide	from	
which	transcription	starts.	In	addition	to	the	codons	(words)	that	code	for	amino	acids,	
there	are	punctuation	codons	that	indicate	the	beginning	and	end	of	a	codon	sequence	that	
constitutes	one	gene.	
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make	use	of	this	machinery—or	the	closely	allied	RNA	machinery—to	store	
acquired	information	and	to	carry	out	computations	with	it?	

	Stored	Information	in	Computers	and	Genes	

In	computer	memory,	the	symbols,	that	is,	the	words	in	memory	locations,	have	a	
bipartite	structure.	One	part	digitally	encodes	some	information;	the	other	part,	the	
address	part,	makes	that	information	accessible	to	information	processing	
operations.	Genetic	symbols	have	this	same	structure:	every	gene	has	a	coding	
portion,	in	which	the	codon	sequence	encodes	the	amino	acid	sequence	of	a	protein.	
Every	gene	also	has	one	or	more	promoter	and	repressor	components.	They	give	the	
rest	of	the	cellular	machinery	controlled	(programmed)	access	to	the	information	in	
the	coding	portions	of	genes.	

In	computer	memory,	the	coding	portion	and	the	address	portion	of	a	symbol	
are	both	bit	patterns.	Thus,	a	copy	of	the	bit	pattern	that	constitutes	the	address	
portion	of	one	symbol	may	be	stored	in	the	coding	portion	of	another.	The	storing	of	
addresses	makes	possible	indirect	addressing.	Indirect	addressing	makes	variable	
binding	possible.	Variable	binding	makes	data	structures	possible.	Data	structures	
are	the	soul	of	a	computing	machine.	They	embody	the	computer’s	knowledge.	

In	genetic	memory,	the	coding	portion	of	a	gene	and	the	promoter/repressor	
portions	are	both	nucleotide	sequences.	The	proteins	called	transcription	factors	
contain	segments	that	bind	to	the	promoter	and	repressor	regions	of	specific	other	
genes.	The	bipartite	structure	of	the	gene	and	the	selective	binding	of	transcription	
factors	to	particular	promoter	and	repressor	sequences	together	implement	indirect	
addressing	in	genetic	memory.	Indirect	addressing	in	genetic	memory	is	what	
makes	the	eye	gene	possible.	It	sits	atop	a	genetic	data	structure	in	the	cellular	
nucleus,	just	as	the	symbol	for	a	document	file	(the	name	of	the	file)	sits	atop	a	data	
structure	in	the	memory	of	a	computer.	

Variable	Binding,	Indirect	Addressing	and	Data	Structures	

Among	the	first	operations	that	the	beginning	student	of	computer	programming	
learns	is	the	operation	of	assigning	a	value	to	a	variable.	In	most	computer	
languages,	it	goes	like	this:	
	
“W	=	135,”						which	translates	as	“set	the	value	of	a	variable	W	to	135”	
	
Conceptually,	this	operation	creates	two	symbols	in	the	memory	of	the	computer,	
that	is,	two	bit	patterns	stored	at	different	locations	in	memory.	One	is	the	bit	
pattern	for	the	variable,	W.	The	other	is	the	bit	pattern	for	the	current	value	of	this	
variable,	namely,	135.	This	latter	bit	pattern	is	the	physical	realization	of	the	
number	that	specifies,	say,	someone’s	weight.	Each	location	in	memory	has	a	unique	
address,	its	own	zip	code,	so	to	speak.	The	problem	of	variable	binding	is	the	
problem	of	getting	from	the	symbol	for	the	variable	to	the	symbol	for	its	value.	
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Given	the	bipartite	structure	of	computer	symbols,	it	is	fairly	obvious	how	to	
solve	this	problem:	Make	the	bit	pattern	for	the	address	of	the	value	the	bit	pattern	
that	represents	the	variable.	Then,	when	the	machine	goes	to	the	address	where	the	
symbol	for	the	variable	is	to	be	found,	the	bit	pattern	it	finds	at	that	address	is	the	
address	of	the	variable’s	value.	This	bit	pattern	is	called	a	pointer.	To	get	to	the	
value	of	a	variable,	the	machine	rarely	goes	directly	to	the	address	where	the	value	
itself	is	to	be	found;	rather,	it	goes	to	an	address	where	it	finds	a	symbol	that	points	
to	the	address	of	the	value.	Or,	in	the	more	complex	reality,	it	goes	to	an	address	
where	it	finds	a	number,	which,	after	some,	possibly	rather	complex	computations	
involving	other	numbers,	yields	the	address	of	a	variable’s	value.	These	
computations	are	called	pointer	arithmetic.	One	consequence	of	this	principle	is	that	
the	contents	of	many	words	in	computer	memory	do	not	refer	to	things	outside	the	
machine;	rather	they	are	the	addresses	of	other	locations	in	memory.	They	have	a	
purely	internal	reference.	That	is	how	data	structures	are	built	up	in	the	memory	of	
a	computer.	

The	genetic	machinery	works	in	the	same	way.	The	coding	portion	of	many	
genes	does	not	encode	the	structure	of	a	protein	that	forms	an	element	of	cellular	or	
tissue	structure;	rather,	it	encodes	a	protein	that	is	a	transcription	factor,	a	genetic	
pointer.	Transcription	factors	bind	to	the	promoter	and	repressor	regions	of	genes,	
activating	or	suppressing	the	transcription	(reading)	of	their	coding	portions.	Thus,	
for	example,	the	gene	for	an	eye	does	not	encode	the	structure	of	a	protein	found	in	
the	realized	eye;	rather,	it	encodes	the	structure	of	a	transcription	factor.	And,	the	
genes	to	whose	promoters	that	factor	binds	also	encode	transcription	factors.	One	
has	to	go	down	a	fair	ways	in	the	genetic	data	structure	to	get	to	genes	that	encode	
proteins	that	form	structural	components	of	the	realized	eye.	

	The	genes	that	encode	transcription	factors	are	symbols	for	variables.	Indirect	
addressing	gives	the	cellular	machinery	structured	access	to	the	data	that	specifies	
how	to	build	an	actual	eye,	that	is,	how	to	realize	the	value	of	the	eye	variable.	The	
distinction	between	the	symbol	for	the	variable	(the	genetic	symbol	for	an	eye)	and	
the	symbols	for	the	value	of	that	variable	in	a	particular	case	(the	genetic	data	
structure	that,	when	appropriately	read,	yields	a	realized	eye)	is	dramatically	
illustrated	by	the	fact	that	the	genetic	symbol	for	an	eye	is	homologous	in	the	human	
and	the	fruit	fly.	The	homology	is	so	close	that	one	can	put	the	human	gene	into	the	
cells	of	a	developing	fruit	fly,	turn	it	on	at	some	location,	and	generate	an	eye	at	that	
location—the	faceted	dome	fruit	fly	eye,	not	a	human	eye,	with	its	lens	and	pupil	
(Quiring,	Walldorf	et	al.	1994).	Thus,	the	physical	realization	of	the	symbol	for	an	
eye	is	(almost)	the	same	in	the	fruit	fly	and	the	human	genome,	but	the	realized	
eye—the	value	of	the	variable—is	radically	different.	The	physical	symbol	for	the	
genetic	program	that	makes	an	eye	has	remained	the	same	through	hundreds	of	
millions	of	years,	while	the	nature	of	the	eye-constructing	program	itself,	hence,	the	
structure	of	the	realized	variable,	has	diverged	greatly.	
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The	Building	Blocks	of	Computation	

The	building	blocks	of	physically	realized	computations	are	logic	gates,	simple	
structures	that	realize	the	logical	operations	AND,	OR,	NOT,	NAND	and	XOR	
(exclusive	or).	These	operations	are	implemented	at	the	molecular	level	in	the	
reading	of	genetic	data	structures.	Transcription	factors	often	form	dimers,	that	is,	
they	transiently	bind	to	one	another,	forming	a	molecular	compound	with	functional	
properties	its	constituents	lack.	Transcription	Factor	A	and	Transcription	Factor	B	
may	neither	of	them	bind	to	the	promoter	of	Gene	X,	but	their	dimer	may	do	so.	In	
that	case,	when	either	factor	is	present	alone,	Gene	X	is	not	transcribed,	but	when	
both	are	present,	it	is.	This	is	a	molecular	AND	gate.	If,	on	the	other	hand,	the	AB	
dimer	binds	to	a	repressor	of	Gene	X,	then	the	gene	may	be	transcribed	when	
neither	factor	is	present	or	when	either	is	present	alone	but	not	when	both	are	
present.	This	is	a	molecular	level	NAND	gate.	(There	is	a	proof	in	theoretical	
computer	science	that	to	build	a	computer	all	you	need	are	NAND	gates.)	Or,	it	may	
be	that	either	A	or	B	will	bind	to	the	promoter	of	Gene	X,	thereby	activating	its	
transcription,	but	when	both	are	present,	they	dimerize,	and	the	dimer	no	longer	
binds	to	that	promoter.	This	implements	XOR.	Finally,	of	course,	the	binding	of	a	
transcription	factor	to	a	repressor	implements	NOT.	

In	short,	processes	operating	within	cells	at	the	level	of	individual	molecules	
implement	the	basic	building	blocks	of	computation,	and	they	do	so	in	close	
connection	with	the	reading	of	stored	information.	The	information	in	question	is	
hereditary	information,	not	experientially	acquired	information.	Nonetheless,	it	is	
tempting	to	think	that	evolution	long	ago	found	a	way	to	use	this	machinery,	or	
closely	related	machinery,	or,	at	the	very	least,	functionally	similar	molecular	
machinery,	to	do	the	same	with	experientially	acquired	information.	

Size	Matters	

	The	logical	gates	that	are	the	building	blocks	of	computational	machinery	can	also	
be	implemented	by	neural	circuits.	However,	in	pondering	the	relative	plausibility	of	
intracellular	molecular	implementation	versus	neural	circuit	implementation	of	
basic	computational	operations,	one	should	keep	in	mind	the	vast	difference	in	the	
size	of	the	posited	machinery.	One	turn	of	the	DNA	helix,	which	contains	11	
nucleotides	and	can	encode	22	bits	of	information	(2	bits	per	nucleotide),	has	a	
volume	of	about	1.1x10-26	meters	(11	cubic	nanometers),	whereas	one	neuron	has	a	
volume	on	the	order	of	2x10–14	meters	(20,000	cubic	microns).	Thus,	machinery	
built	at	the	level	of	molecules	occupies	12	to	15	orders	of	magnitude	less	volume	
than	machinery	built	at	the	level	of	neurons.	It	is	hard	to	grasp	how	great	a	
difference	in	size	this	is—roughly	the	difference	in	size	between	a	neuron	and	the	
original	Univac	computer.	It	is	also	roughly	the	difference	in	size	between	the	
original	Univac	and	a	contemporary	computing	state-of-the	art	CPU.	The	
contemporary	CPU	is	a	very	much	better	computing	machine	than	the	original	
Univac,	largely	because	it	is	so	much	smaller,	faster	and	more	energy	efficient.	For	
the	same	reasons,	molecule-sized	computing	machinery	inside	neurons	would	be	
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many	orders	of	magnitude	smaller	faster	and	more	energy	efficient	than	the	same	
machinery	implemented	at	the	level	of	neuronal	circuits,	using	synapses	as	memory	
elements.	

Evidence	

These	are	the	thoughts	that	have	slowly	taken	form	in	my	mind.	But	where	is	the	
evidence?	Other	than	plausibility	arguments	for	why	memory	and	computation	in	
nervous	tissue	ought	to	be	an	intracellular	molecular-level	process	rather	than	an	
intercellular	circuit-level	process,	is	there	any	experimental	evidence?	Until	very	
recently,	I	had	to	admit	the	answer	was,	no.	However,	the	Hesslow	laboratory	in	
Lund	have	recently	described	work	showing	that	the	acquired	information	that	
informs	the	appropriately	timed	conditioned	eyeblink	response	in	the	ferret	resides	
within	individual	Purkinje	cells	in	the	cerebellar	cortex.	This	same	experiment	
shows	that	the	cell	possesses	machinery	capable	of	reading	out	this	information	into	
complexly	structured	spike	trains	in	response	to	synaptic	inputs,	which	inputs	
indicate	simply	and	only	the	onset	of	a	conditioned	stimulus.	This	minimally	
informative	input,	which	contains	no	information	about	the	temporal	relation	
between	the	conditioned	stimulus	and	the	unconditioned	stimulus,	produces	a	
complex	spike-train	output	that	is	informed	by	acquired	temporal	information	
stored	within	the	cell.	

Behavioral	experiments	long	ago	showed	that	a	critical	component	of	the	
information	acquired	during	Pavlovian	conditioning	was	the	duration	of	the	inter-
stimulus	interval	(ISI),	the	interval	between	the	onset	of	a	predictive	stimulus	(the	
CS,	which	is	short	for	conditioned	stimulus)	and	the	onset	of	the	event	it	predicts	
(the	US,	short	for	unconditioned	stimulus).	Experiment	showed	that	the	timing	of	
the	acquired	response	to	the	CS	varies	in	a	systematic,	functionally	appropriate	way	
with	the	inter-stimulus	interval.	The	animal	does	not	simply	blink	in	response	to	the	
CS;	it	blinks	at	the	right	time.	The	latency	of	blink	onset	varies	in	proportion	to	the	
variation	in	the	duration	of	the	ISI	in	such	a	way	that	the	eye	reaches	maximum	
closure	at	the	moment	when	the	CS	predicts	that	the	US	will	occur.	The	ISI-
dependent	timing	of	the	conditioned	response	is	observed	in	all	of	the	simple	
learning	preparations	that	are	used	to	investigate	the	neurobiology	of	associative	
memory	(Gallistel	and	Gibbon	2000;	Balsam	and	Gallistel	2009;	Balsam,	Drew	et	al.	
2010),	so	finding	the	mechanism	that	stores	this	temporal	information	is	critical	to	a	
neurobiological	understanding	of	learning	and	memory.	

It	has	always	been	assumed	that	the	structural	change	mediating	an	
appropriately-timed	acquired	response	(a	CR	for	conditioned	response)	must	lurk	
within	the	mechanism	of	synaptic	transmission.	It	is	taken	for	granted	in	the	
literature	on	the	neurobiology	of	learning,	that	learning	of	any	kind	must	alter	either	
the	release	of	transmitter	from	pre-synaptic	terminals	or	the	mechanisms	that	
mediate	the	binding	of	the	transmitter	to	receptor	molecules	in	the	post-synaptic	
membrane,	or	perhaps	both.	However,	how	alterations	in	those	synaptic	processes	
could	store	the	duration	of	an	interval	has	always	been	a	mystery.	The	
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neurobiologists	have	taken	the	primary	challenge	to	be	explaining	the	fact	that	the	
conditioned	response	occurs,	not	to	explain	the	fact	that	it	occurs	at	the	right	time.	
The	latter	fact	has	been	treated	as	one	of	those	mysteries	that	we	would	tackle	later,	
once	we	had	solved	the	mystery	of	why	a	conditioned	response	develops.	

Neural	net	modelers	(connectionists)	have	suggested	that	the	information	about	
the	duration	of	the	ISI	resided	in	some	unspecified	way	in	alterations	in	the	pattern	
of	synaptic	connections	(synaptic	weights)	within	a	complex	neural	network	
(Martin	and	Morris	2002),	but	these	suggestions	have	been	vague.	There	has	never	
been	a	specification	of	what	the	synaptic	code	might	be,	nor	how	the	stored	
information	could	be	made	accessible	to	computation.	Specifying	the	synaptic	code	
would	enable	us	to	understand	why	one	pattern	of	synaptic	connections	encoded	
the	fact	that	the	ISI	lasted	150	ms	while	another	encoded	the	fact	that	it	lasted	300	
ms.	Specifying	how	the	encoded	information	entered	into	computations	would	
enable	us	to	understand	how	the	first	encoding	produced	a	blink	that	culminated	at	
150	ms	while	the	second	produced	a	blink	that	culminated	at	300	ms.	Other	
theorists	have	assumed	that	the	answer	lay	in	selective	associations	between	
neurons—or	even	whole	networks	of	neurons	(Matell,	Meck	et	al.	2003;	Meck,	
Penney	et	al.	2008)—with	intrinsically	different	temporal	dynamics.	It	has	been	
suggested	that	neurons	that	intrinsically	(in	the	absence	of	any	informative	
experience)	respond	to	the	CS	with	a	firing	rate	that	rises	to	a	peak	at	150	ms	and	
then	declines	rapidly	become	preferentially	associated	with	the	blink	response	
when	the	ISI	is	150	ms,	whereas	neurons	with	a	slower	dynamic,	peaking	at	300	ms,	
become	selectively	associated	with	the	response	when	the	ISI	is	300	ms	(Grossberg	
and	Schmajuk	1989;	Yamazaki	and	Tanaka	2009).	None	of	these	models	was	
plausible	on	its	face	and	none	has	received	empirical	confirmation	(Hesslow,	
Jirenhed	et	al.	2013).	So,	the	mystery	of	the	structural	change	that	mediates	the	
appropriate	timing	of	the	conditioned	response	has	remained	throughout	more	than	
half	a	century	of	intensive	research	on	the	neurobiology	of	learning	and	memory.	

The	just-appearing	experiment	from	the	Hesslow	laboratory	builds	on	the	
progressive	refinement	of	eye-blink	preparation	over	the	last	half	century.	In	this	
preparation,	the	CS	is	usually	a	tone	whose	onset	warns	of	a	perioccular	shock	or	an	
air	puff	to	the	eyeball	(the	US).	The	US	causes	the	eye	to	blink.	If	the	onset	of	the	
tone	CS	reliably	predicts	the	US	at	some	fixed	latency,	the	animal	learns	to	blink	in	
response	to	the	onset	of	the	tone.	As	already	emphasized,	the	latency	at	which	it	
blinks	varies	in	proportion	to	the	latency	between	tone	onset	and	shock	(the	ISI).	

Earlier	work,	most	notably	from	the	laboratory	of	Richard	Thompson,	showed	
that	the	critical	circuitry	was	in	the	cerebellum	(Krupa,	Thompson	et	al.	1993;	Bao,	
Chen	et	al.	2002;	Christian	and	Thompson	2003).	This	was	itself	a	surprise.	It	was	
also	exciting,	because	the	neuroanatomy	of	the	cerebellum	is	relatively	simple	and	
extremely	repetitive.	For	which	reason,	there	has	been	a	huge	amount	of	work	on	
the	neurophysiology	and	neuropharmacology	of	cerebellar	circuitry.	When	focus	
shifted	to	the	cerebellum	with	its	(relatively!)	simple	circuits,	it	was	shown	that	the	
blink	response	was	gated	by	a	CS-produced	pause	in	the	endogenously	generated	
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(Cerminara	and	Rawson	2004)	basal	firing	of	the	large	Purkinje	cells	(Jirenhed,	
Bengtsson	et	al.	2007).	The	axons	of	the	Purkinje	cells	carry	the	output	signals	from	
the	cerebellar	cortex.	The	duration	of	this	learned	pause	in	Purkinje	cell	firing	
covaried	with	the	ISI	used	in	training	(Jirenhed	and	Hesslow	2011;	Jirenhed	and	
Hesslow	2011).	Thus,	the	pause	in	the	firing	of	the	Purkinje	cells	is	an	
electrophysiological	proxy	for	the	conditioned	response.	

	

Figure	1.	The	experimental	preparation	in	the	recent	experiment	from	the	Hesslow	
laboratory.	The	artificial	CS	was	a	spike	train	generated	in	the	parallel	fibers	by	a	
train	of	stimulating	pulses	delivered	through	the	CS	electrode.	The	artificial	US	was	a	
spike	train	in	the	climbing	fibers	generated	by	direct	electrical	stimulation	of	the	
olivary	nucleus.	The	conditioned	response	of	the	Purkinje	cell	was	monitored	via	a	
recording	electrode.	

The	massive	dendritic	tree	of	a	Purkinje	cell	spreads	athwart	the	parallel	fiber	
system	in	the	cerebellum	(Figure	1).	The	parallel	fibers	coursing	along	the	folds	in	
the	cerebellar	cortex	are	analogous	to	the	signal	bus	in	a	computer.	A	Purkinje	cell	
reads	the	signal	pattern	across	a	portion	of	this	signal	bus.	The	schematic	in	Figure	1	
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is	grossly	misleading	as	regards	the	density	of	the	parallel	fibers.	The	dendritic	tree	
of	a	single	Purkinje	cell	is	synaptically	contacted	by	as	many	as	200,000	parallel	
fibers	(Harvey	and	Napper	1991).	The	neural	signals	generated	by	behaviorally	
effective	CSs	reach	the	Purkinje	cells	by	way	of	the	mossy	fibers	that	synapse	on	
granule	cells	in	deep	cerebellar	nuclei.	The	granule	cells	give	rise	to	fibers	that	
ascend	almost	to	the	cortical	surface	of	the	cerebellum,	where	they	send	branches	
that	run	along	the	folds	in	the	cerebellar	cortex.	These	branches	are	the	parallel	
fiber	system,	the	cerebellar	signal	bus.	Signals	generated	by	USs	(predicted	stimuli)	
reach	the	cerebellar	Purkinje	cells	by	way	of	the	so-called	climbing	fibers,	which	
originate	from	cells	in	the	olivary	nucleus	of	the	cerebellum.	Thus,	the	Purkinje	cell	
is	one	of	several	sites	of	convergence	of	CS	and	US	signals.	

A	second	exciting	advance	was	the	demonstration	that	the	learned	pause	in	the	
firing	of	the	Purkinje	cells	was	seem	even	when	direct	electrical	stimulation	of	the	
parallel	fibers	themselves	was	used	in	place	of	a	natural	conditioned	stimulus	and	
stimulation	of	the	olivary	nucleus	was	used	in	place	of	a	natural	unconditioned	
stimulus	(Jirenhed,	Bengtsson	et	al.	2007;	Hesslow,	Jirenhed	et	al.	2013;	Johansson,	
Jirenhed	et	al.	2013	MS).	This	discovery	radically	reduces	the	neural	circuitry	that	is	
the	focus	of	attention	(Figure	1)	and	gives	experimenters	unprecedented	control	of	
the	inputs	to	the	Purkinje	cell.	

In	the	most	recent	experiments	from	the	Hesslow	laboratory,	they	electrically	
stimulate	some	portion	of	parallel	fibers	while	recording	from	a	Purkinje	cell	that	is	
reading	some	portion	of	the	stimulated	fibers.	In	place	of	a	periorbital	shock	for	the	
US,	they	use	direct	stimulation	of	the	olivary	nucleus.	Thus,	they	have	direct	control	
of	the	pre-synaptic	spike	train	that	carries	the	CS	signal;	each	parallel	fiber	within	
the	stimulating	field	follows	the	stimulating	pulses	one	spike	per	one	stimulus	pulse.		
In	this	way,	the	experimenters	directly	determine	the	parallel	fiber	signal	arriving	at	
the	dendrites	of	the	Purkinje	cell	from	which	they	record.	

Before	training,	the	stimulation-elicited	spike	train	in	the	parallel	fibers—the	
artificial	CS—elicits	an	immediate,	strong	increase	in	the	firing	of	the	Purkinje	cell.	
The	increase	rate	of	firing	lasts	as	long	as	the	CS	spike	train,	and	ceases	abruptly	
when	that	input	terminates,	to	be	followed	by	a	profound	and	prolonged	reduction	
in	the	basal	firing	rate.	

In	their	experimental	protocol,	they	then	“condition”	(teach)	the	Purkinje	cell	by	
pairing	stimulation	of	the	parallel	fibers	(the	artificial	CS)	with	stimulation	of	the	
olivary	nucleus	(the	artificial	US).	In	different	repetitions	of	the	experiment,	they	use	
different	ISIs,	different	intervals	between	the	onset	of	parallel	fiber	stimulation	and	
the	onset	of	olivary	stimulation.	

The	training	profoundly	alters	the	Purkinje	cell’s	response	to	the	spike	train	in	
the	parallel	fibers.	After	training,	the	onset	of	the	pre-synaptic	spike	train	in	the	
parallel	fibers	no	longer	elicits	an	increase	Purkinje	cell	firing;	rather,	it	elicits	an	
almost	complete	pause	in	the	cell’s	basal	firing.	In	other	words,	the	training	appears	
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to	convert	an	excitatory	synapse	into	an	inhibitory	synapse,	although	I	think	that	
this	will	prove	to	be	a	misleading	way	of	thinking	about	the	phenomenon.	This	
conversion	in	the	apparent	properties	of	the	parallel-fiber-to-Purkinje	cell	synapses	
is	not	subtle;	the	training	produces	a	huge	sign-reversing	change	in	the	input-output	
characteristics	of	these	synapses.	(There	is	also	a	dramatic	change	in	the	duration	of	
the	pause	in	Purkinje	cell	that	follows	the	offset	of	the	CS.)	Yhe	Purkinje	cell’s	post-
training	response	to	the	artificial	CS	signal	is	both	complex	and	radically	different	
from	its	pre-training	response.	

More	importantly	still,	the	duration	of	the	pause	in	Purkinje	cell	firing	varies	in	
proportion	to	the	training	ISI.	And	most	importantly,	the	duration	of	this	learned	
pause	depends	only	on	the	training	ISI,	not	on	the	duration	of	the	presynaptic	spike	
train	that	causes	it.	The	duration	of	the	Purkinje	cell’s	firing	pause	does	not	vary	in	
response	to	large	(post-training)	variations	in	the	inter-spike	intervals	within	the	
presynaptic	spike	train,	nor	to	large	changes	in	the	overall	duration	of	this	spike	
train.	The	learned,	well-timed	post-training	response	of	the	Purkinje	cell	is	the	same	
when	the	pre-synaptic	spike	train	is	produced	by	a	stimulus	train	lasting	only	17.5	
ms	and	containing	8	pulses	(hence,	with	an	inter-pulse	interval	of	slightly	more	than	
2	ms)	as	when	the	it	lasts	800	ms	and	contains	81	pulses	(hence,	with	an	interpulse	
interval	of	10	ms).	In	short,	radically	different	synaptic	inputs	produce	the	same	
learned	output	from	the	Purkinje	cell.	

These	results	show	that	the	temporal	information	acquired	during	the	training	
experience—the	remembered	duration	of	the	ISI—is	expressed	in	the	time	course	of	
the	Purkinje	cell’s	response	to	the	onset	of	a	pre-synaptic	spike	train,	under	
circumstances	where	it	is	almost	inconceivable	that	this	temporal	information	is	in	
the	activating	input	(the	pre-synaptic	spike	train)	or	in	the	synaptic	conductances	
between	the	parallel	fiber	input	and	the	postsynaptic	Purkinje	cell.	All	that	the	input	
appears	to	do	is	trigger	the	output;	the	temporal	characteristics	of	the	output	are	
quite	unrelated	to	the	temporal	characteristics	of	the	input.	The	results	would	seem	
to	imply	that	the	acquired	temporal	information	is	not	encoded	in	the	synaptic	
connections	between	the	parallel	fibers	and	the	Purkinje	cell,	much	less	in	some	
complex	pattern	of	synaptic	weights,	spread	throughout	some	neural	net.	Rather,	it	
is	encoded	by	a	change	in	some	(molecular?)	structure	within	the	Purkinje	cell	itself.	

In	the	post-training	Purkinje	cell,	the	onset	of	a	pre-synaptic	spike	train	causes	
the	information	in	this	intracellular	structure	to	be	read	out	into	a	spike	train	whose	
temporal	complexity	depends	not	at	all	on	the	temporal	structure	of	the	pre-
synaptic	spike	train	that	activates	the	read	out,	but	rather	on:	1)	an	intracellular	
mechanism	that	has	stored	the	temporal	information	acquired	from	experience;	and	
2)	on	intracellular	machinery	capable	of	converting	the	stored	information	into	a	
complex	output	signal	when	activated	by	a	simple	input	signal.	The	output	conveys	
the	intracellularly	stored	acquired	information	to	the	neurons	in	the	deep	nuclei	on	
which	the	output	axon	of	the	Purkinje	cell	synapses.	
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This	result	is	incomprehensible	on	the	basis	of	the	simple	properties	that	neural	
net	theorists	imagine	neurons	to	possess,	which	are	those	of	a	leaky	integrator	with	
a	threshold	on	its	output.	On	the	other	hand,	this	result	is	perfectly	intelligible	if	one	
imagines	that	the	physical	basis	of	memory	is	not	in	the	synapse	but	rather	in	
information-storing	changes	in	molecules	inside	neurons	and	if	one	further	
imagines	that	the	neuron	also	contains	the	molecular	level	machinery	necessary	to	
read	that	stored	information	out	into	a	complexly	patterned	spike	train.	This	spike	
train	is	informed	almost	entirely	by	acquired	information	that	has	been	stored	
inside	the	neuron	rather	than	by	the	information	conveyed	to	the	neuron	through	its	
synaptic	inputs	or	by	the	intrinsic	dynamics	of	the	neuron	itself.	

Given	results	this	revolutionary	in	their	implications,	it	is	natural	and	
appropriate	to	ask	whether	some	other	interpretation	is	possible.	How	sure	can	we	
be	that	it	is	the	parallel	fiber	input	that	it	critical	to	both	the	pre-training	response	
and	the	radically	different	post-training	responses	of	the	Purkinje	cell?	In	the	top	
layer	of	the	cerebellar	cortex,	one	finds	not	only	the	dense	parallel	fiber	system	but	
also	two	other	kinds	of	neurons,	stellate	cells	and	basket	cells.	Both	of	these	make	
inhibitory	synapses	on	the	Purkinje	cell.	It	is	natural	to	wonder	whether	these	
inputs	might	somehow	explain	the	appropriately	timed	pause	in	the	post-training	
firing	of	the	Purkinje	cell,	because	it	is	possible,	perhaps	even	likely,	that	the	
electrical	stimulation	of	the	parallel	fibers	stimulates	some	of	these	neurons	as	well.	

To	address	this	question,	the	Hesslow	lab	turned	to	another	phenomenon	
observable	in	the	same	preparation:	When	one	stimulates	parallel	fibers	that	are	
“off	beam”,	that	is,	that	do	not	synapse	on	the	Purkinje	cell	from	which	one	is	
recording,	one	observes	a	profound	inhibition	of	the	basal	firing	in	the	cell	from	
which	one	is	recording.	There	is	reason	to	believe	that	this	inhibition	is	mediated	by	
either	the	stellate	cells	or	the	basket	cells,	both	of	which	are	known	to	make	
inhibitory	synapses	on	the	near	dendrites	and	cell	body	of	the	Purkinje	cell.	When	
Hesslow	and	his	colleagues	inject	a	drug	that	blocks	the	action	of	the	inhibitory	
transmitter,	the	inhibitory	effect	of	off-beam	stimulation	on	the	basal	firing	of	the	
Purkinje	cell	is	eliminated,	but	this	drug	injection	has	no	effect	on	the	cell’s	learned,	
well-timed	response	to	the	artificial	CS.	This	is	strong	evidence	against	a	role	for	
these	inhibitory	cells	in	explaining	the	timing	of	the	learned	pause	in	the	Purkinje	
cell’s	response.	

More	Evidence:	Abrupt	Changes	in	Hippocampal	Frames	of	Reference	

The	evidence	from	the	Hesslow	lab	is	the	most	direct	evidence	that	machinery	for	
storing	acquired	information	resides	inside	neurons	rather	than	in	the	synaptic	
connections,	and	so	does	the	machinery	for	reading	out	that	information	into	a	spike	
train.	Less	direct	evidence	comes	from	at	least	two	other	sources:	1)	the	learned	
signaling	characteristics	of	the	neurons	in	the	hippocampus	and	associated	
structures	and	2)	learned	alterations	in	presynaptic	transmitter	release	from	
olfactory	neurons.	
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The	firing	of	neurons	in	the	hippocampus	and	in	other	closely	connected	regions	
of	the	medial	temporal	lobe	is	dramatically	dependent	on	previously	acquired	
spatial	and	temporal	information	(see	for	recent	review	Gallistel	and	Matzel	2013).	
The	firing	of	these	neurons	is	not	determined	by	what	if	anything	the	rat	currently	
sees	or	hears	or	smells	or	feels.	Rather,	it	is	determined	by	the	animal’s	location	and	
orientation	on	its	cognitive	map,	as	computed	by	its	brain	from	a	variety	of	past	
sensory	inputs	(Gallistel	and	Matzel	2013)2.	

A	location	and	an	orientation	are	represented	by	systems	of	coordinates.	But	
coordinates	represent	a	location	or	orientation	in	an	experienced	environment	only	
when	they	have	been	anchored	to	an	experienced	frame	of	reference.	This	anchoring	
is	what	endows	a	system	of	coordinates	with	a	semantics,	that	is,	with	a	specific	
spatial	reference.	The	location	and	orientation	specified	by	a	set	of	coordinates	
depends	on	the	learned	frame	of	reference	to	which	they	refer.	What	is	innate	in	the	
brain’s	system	for	representing	the	experienced	geometry	of	its	environment	are	
systems	of	coordinates,	the	machinery	that	implements	vector	spaces.	A	vector	
space	is	a	symbolic	system	that	can	in	principle	represent	the	geometry	of	an	
environment.	For	a	vector	space	to	represent	an	actually	experienced	space,	it	must	
be	anchored		to	a	frame	of	reference	with	the	experienced	environment.	In	the	
course	of	constructing	its	cognitive	maps,	the	brain	anchors	systems	of	coordinates	
to	many	different	frames	of	reference.	In	one	frame,	location	may	be	specified	by	
reference	to	a	prominent	white	card	on	an	otherwise	black	wall.	In	another	frame,	
the	same	location	may	be	signaled	by	reference	to	the	geometry	of	the	enclosure	or	
by	the	geometry	of	the	large	space	that	contains	the	enclosure.	

The	firing	of	the	head-direction	cells,	place	cells,	and	grid	cells	that	signal	the	
animal’s	current	location	and	orientation	is	anchored	to	different	frames	of	
reference,	even	for	one	and	the	same	neuron.	There	are	object-based	frames	of	
reference,	enclosure-based	frames	of	reference,	and	large	scale	(extra-enclosure)	
based	frames	of	reference	(Gallistel	and	Matzel	2013).	The	same	grid	or	place	cell	or	
the	same		head-direction	cell	may	signal	location	or	direction	within	one	of	these	
frames	of	reference	at	one	moment	and	a	small	fraction	of	a	second	later	signal	
location	or	direction	within	a	different	frame	of	reference	(Gothard,	Skaggs	et	al.	
1996;	Gothard,	Skaggs	et	al.	1996;	Frank,	Brown		et	al.	2000;	Redish,	Rosenzweig	et	
al.	2000;	Rivard	and	al.	2004;	Diba	and	Buzsáki	2008;	Derdikman,	Whitlock	et	al.	
2009).	The	astonishingly	abrupt	changes	in	the	frame	of	reference	within	which	the	
cell’s	firing	specifies	a	location	or	direction	is	difficult	to	explain	if	one	assumes	that	
the	acquired	information	about	the	geometry	of	the	experienced	environment	is	

																																																								
2	Recent	work	from	Eichenbaum’s	laboratory	(MacDonald,	C.	J.,	K.	Q.	Lepage,	et	al.	(2011).	
"Hippocampal	“Time	Cells”	Bridge	the	Gap	in	Memory	for	Discontiguous	Events."	Neuron	
71(4):	737-749,	Eichenbaum,	H.	(2013).	"Memory	on	time."	Trends	in	Cognitive	Science	
17(2):	81-88.)	shows	that	these	cells	also	signal	temporal	location,	that	is,	the	current	
temporal	distance	from	recent	events	that	function	as	temporal	landmarks	in	that	they	
occur	at	a	fixed	(temporal)	distance	from	other	events	of	interest.	Thus,	these	cells	appear	
to	signal	the	animal’s	spatio-temporal	location	in	a	spatio-temporal	cognitive	map.	
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encoded	in	complex	patterns	of	synaptic	strength	spread	throughout	an	extensive	
neuronal	network	(a	so-called	distributed	representation).	Just	how	difficult	it	is	to	
explain	these	abrupt	transitions	on	such	a	basis	is	hard	to	say,	because	the	
antecedent	question	of	how	patterns	of	synaptic	strengths	might	encode	
environmental	geometry	has	not	been	addressed.	There	are	no	theoretical	
proposals	about	how	to	embed	a	vector	space	in	a	set	of	synapses,	only	hand	waves.	
An	extremely	abrupt	(<80ms)	change	in	a	frame	of	reference	is	much	easier	to	
explain	if	one	assumes	that	the	acquired	information	about	the	geometry	of	the	
animal’s	environment	is	stored	within	the	cell	itself;	in	other	words,	if	one	assumes	
that	the	spatio-temporal	map	is	in	the	neuron	itself	rather	than	in	a	neural	circuit.	

I	digress	here	to	emphasize	the	following	point:	whereas	there	are	no	theories	
about	how	geometric	information	might	be	stored	in	a	pattern	of	synaptic	
conductances,	we	know	very	well	how	information	of	any	kind	might	be	stored	in	
DNA.	The	structure	of	DNA	permits	the	storage	of	information	at	2	bits	per	
nucleotide,	because	any	of	the	4	nucleotides	may	follow	any	other	in	the	sequence	of	
nucleotides	in	a	DNA	or	RNA	molecule.	A	single	nucleotide	is	approximately	1/3	of	a	
nanometer	in	length.	Therefore,		DNA	stores	information	at	a	linear	density	of	6	bits	
per	nanometer.	(To	return	for	a	moment	to	the	consideration	of	size,	the	width	of	a	
synaptic	cleft	is	about	20	nm;	the	diameter	of	the	presynaptic	vessicles	that	package	
neurotransmitters	for	release	from	presynaptic	terminals	is	35	nm.)	A	basic	truth	of	
computer	science	is	that	a	medium	suited	to	the	storage	of	one	kind	of	information	
is	suited	to	the	storage	of	any	kind	of	information.	When	it	comes	to	information	
storage	and	transmission,	information	is	information;	it’s	all	just	bits.	That	is	why	
even	poems	can	be	stored	in	bacterial	DNA	(Gardiner	2010).	That	is	why	there	are	
laboratories	actively	exploring	the	use	of	DNA	as	the	memory	component	in	a	future	
computing	machine	(Team	2010;	Goldman,	Bertone	et	al.	2013).	If	and	when	DNA	
becomes	the	memory	component	of	a	computing	machine,	geometric	information	
will	be	stored	in	it	in	essentially	the	same	way	it	is	now	stored	in	the	memories	of	
the	servers	that	you	access	when	you	use	Google	maps.	In	short,	there	is	no	mystery	
about	how	to	store	geometric	information	in	the	structure	of	DNA-,	or	RNA-like	
molecules,	whereas	there	is	a	profound	mystery	about	how	to	store	information	in	
synapses.	

Still	More	Evidence:	Learned,	Selective	Immediate	Enhancement	of	
Neurotransmitter	Release	from	First	Order	Olfactory	Neurons	

When	we	grasp	the	fact	that	acquired	information	may	be	stored	in	a	complex	
molecular	computing	machine	inside	each	neuron,	there	is	no	reason	not	to	assume	
that	this	occurs	in	every	kind	of	neuron,	including	sensory	neurons	and	motor	
neurons.	Sensory	neurons	may	use	acquired	information	to	help	them	interpret	the	
information	picked	up	by	their	transducer	elements.	That	is,	the	process	of	
interpreting	current	sensory	input	in	the	light	of	previous	experience	may	begin	
within	the	first	order	sensory	neurons	themselves.	Recent	quite	astonishing	findings	
from	the	laboratory	of	my	colleague,	John	McGann,	suggest	just	that.	
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The	McGann	laboratory	brings	state-of-the-art	neurobiological	visualization	
methodology	to	bear	on	the	question	of	how	the	brain	represents	olfactory	input.	
We	do	not	experience	smells	as	a	meaningless	sensations;	rather,	they	are	freighted	
with	learned	significance:	We	smell	bacon	or	the	sea	or	manure	or	eucalyptus	or	the	
odor	of	a	loved	one.	(One	is	reminded	of	Napolean’s	famous	epistolary	admonition	
to	Josephine:	“Coming	home	in	three	days;	don’t	bathe.”)	It	seems	likely	that	the	
same	is	true	for	non-human	animals,	perhaps	even	more	so	than	for	us,	as	odor	
plays	a	larger	role	in	the	sensory/perceptual	life	of	many	animals	than	it	does	in	
ours.	

However,	until	recently,	the	study	of	olfactory	perception	was	a	neurobiological	
and	psychophysical	backwater.	This	changed	with	the	advances	in	the	
understanding	of	olfactory	neuroanatomy	consequent	upon	the	discovery	of	the	
molecular	biology	of	olfactory	transduction	(Mombaerts,	Wang	et	al.	1996;	Su,	
Menuz	et	al.	2009).	

	From	a	functional/computational	standpoint,	a	basic	property	of	any	sensory	
system	is	the	number	of	distinct	channels	that	are	operative.	Each	functionally	
distinct	channel	filters	the	stimulus	in	a	different	way	and	adds	a	degree	of	freedom	
(a	dimension	in	a	vector	space)	to	the	brain’s	representation	of	that	stimulus.	The	
scotopic	visual	system,	which	operates	in	dim	light,	has	only	one	channel;	the	
photopic	system,	which	operates	in	brighter	light,	has	three;	the	auditory	system	
has	thousands.	It	turns	out	that	the	olfactory	system	has	hundreds.	Each	different	
functional	olfactory	channel	is	composed	of	neurons	that	express	one	and	only	one	
of	the	hundreds	of	different	olfactory	receptor	molecules	in	the	receptor	end	of	the	
sensory	neuron	in	the	olfactory	mucosa.	Remarkably,	all	of	the	neurons	that	express	
the	same	receptor	in	their	mucosal	transducer	portion	project	their	signal-carrying	
axons	to	one	or	two	glomeruli	in	the	brain’s	olfactory	bulb.	Glomeruli	are	small	
spherical	synapse-rich	structures	in	the	olfactory	bulb.	Each	glomerulus	receives	
projections	from	only	one	odor	channel.	Thus,	the	functional	unit—the	olfactory	
channel—maps	to	an	anatomical	unit—the	glomerulus.	Every	different	odorant	
creates	a	different	pattern	of	activation	of	the	olfactory	glomeruli.	For	any	given	
odorant,	most	glomeruli	are	inactive,	but	a	few	show	a	pattern	of	activation	in	which	
there	is	odorant-specific	variation	in	the	relative	strengths	of	the	activation.		

McGann’s	laboratory	visualizes	these	activation	patterns	in	mice	both	before	and	
after	they	have	been	trained	with	different	odorants	as	discriminative	stimuli.	One	
of	the	odorants	the	mouse	sniffs	during	training	predicts	shock;	the	other	odors	do	
not.	McGann	and	his	students	find	that	this	training	selectively	increases	
neurotransmitter	release	from	the	presynaptic	endings	of	the	first-order	olfactory	
neurons	synapsing	on	the	glomeruli	encoding	the	shock-predicting	odor.	In	other	
words,	information	gained	from	an	experienced	predictive	relationship	between	
that	odor	and	a	fear-inducing	shock	finds	its	way	to	the	presynaptic	endings	of	the	
first	stage	olfactory	neurons.	This	acquired	information	selectively	alters	their	
signaling	at	the	point	where	they	pass	on	to	the	rest	of	the	brain	the	information	
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they	have	gleaned	from	the	odorant	molecules	currently	binding	to	their	receptors	
in	the	olfactory	mucosa.	

Remarkably,	when	the	spectrum	of	glomeruli	activated	by	the	predictive	odorant	
overlaps	to	some	extent	with	the	spectrum	activated	by	a	non-predictive	odorant,	
the	enhanced	neurotransmitter	release	in	the	glomeruli	in	the	intersect	is	specific	to	
the	predictive	odorant.	The	release	of	transmitter	caused	by	the	non-predictive	
odors	in	those	glomeruli	is	not	enhanced;	only	the	release	produced	there	by	the	
predictive	odor	is	enhanced.	

As	in	most	sensory	systems,	there	are	extensive	efferent	projections	from	higher	
levels	of	the	brain	to	the	synaptic	endings	of	these	sensory	neurons.	Thus,	there	is	
no	neuroanatomical	mystery	as	to	how	the	information	acquired	from	the	
experience	of	the	predictive	relation	between	a	given	odor	and	shock	may	reach	
these	pre-synaptic	endings.	There	are,	however,	two	quite	different	stories	that	one	
may	imagine	about	how	information	conveyed	by	these	efferents	comes	to	inform	
the	release	of	neurotransmitter	from	those	endings.	On	one	hypothesis,	the	
information	about	the	predictive	relation	between	the	one	odorant	and	shock	is	not	
stored	in	the	presynaptic	endings	themselves;	on	the	other	hypothesis,	it	is.	

On	the	one	hand,	one	may	imagine	that	the	acquired	information	about	the	
predictive	relation	between	odor	and	shock	is	stored	more	centrally	in	the	brain.	A	
connectionist	would	imagine	that	the	acquired	information	is	stored	in	some	
distributed	pattern	of	synaptic	conductances	in	some	complex	circuit,	perhaps	
located	in	the	amygdala,	which	is	known	to	play	an	important,	but	ill-defined	role	in	
fear	conditioning,	or	perhaps	in	the	neocortex.	On	this	story,	each	time	an	odorant	
evokes	a	spike	train	in	the	first	order	sensory	neurons,	the	first	few	spikes	in	this	
train	cause	postsynaptic	activity	that	propagates	to	the	complex	central	circuit	in	
which	the	information	acquired	from	the	training	experience	is	stored.	These	initial	
afferent	signals	activate	the	complex	central	circuit	is	such	a	way	as	to	cause	it	to	
generate	an	efferent	signal	that	propagates	back	to	the	endings	of	the	first-order	
sensory	neurons.	This	efferent	recognition	signal	enhances	the	release	of	
neurotransmitter	by	later	portions	of	the	sensory	spike	train.	On	this	story,	the	
predictive	significance	of	the	sensory	signal	is	recognized	centrally—as	has	always	
been	assumed.	

A	different	possibility	—until	recently,	almost	unthinkable—is	that	when	
computations	on	the	temporal	map	of	past	experience	(Balsam	and	Gallistel	2009;	
Balsam,	Drew	et	al.	2010)	reveal	the	predictive	relation	between	a	specific	odor	and	
shock,	this	information	is	relayed	to	the	presynaptic	endings	of	the	first-order	
neurons	to	be	stored	there.	Then,	as	in	the	cerebellar	circuit	studied	in	the	Hesslow	
lab,	this	intracellularly	stored	acquired	information	alters	the	release	of	neuro-
transmitter	by	the	odorant-induced	spike	train.	In	this	way,	the	signal	passed	on	
from	the	first-order	sensory	neurons	to	the	postsynaptic	circuit	is	already	partially	
interpreted	in	the	light	of	the	predictive	relation	revealed	by	previous	experience.	
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On	the	first	hypothesis,	which	almost	any	neuroscientist	would	judge	to	be	far	
more	plausible,	the	selective	enhancement	of	neurotransmitter	release	from	the	
presynaptic	endings	of	the	first-order	olfactory	neurons	can	occur	only	some	while	
after	the	onset	of	the	odorant-evoked	spike	train	in	the	first-order	sensory	neurons,	
because	it	depends	on	real-time	feedback	from	the	central	circuits	where	the	
recognition	of	the	signal’s	predictive	significance	occurs.	On	the	second	hypothesis,	
by	contrast,	the	enhancement	of	neurotransmitter	release	can	occur	at	signal	onset,	
because	it	does	not	depend	on	real-time	feedback.	It	depends	instead	on	locally	
stored	information	conveyed	to	the	presynaptic	endings	by	earlier	“off-line”	
feedback.	This	earlier	off-line	feedback	came	from	the	more	central	structures	that	
computed	the	predictive	relation	from	a	time-stamped	record	of	past	events	
(Balsam	and	Gallistel	2009).	

In	fact,	the	enhancement	that	McGann’s	lab	observes	is	present	throughout	the	
signal.	As	best	they	can	determine,	it	is	already	there	at	signal	onset.	If	the	evidence	
for	the	immediate	enhancement	of	transmitter	release	holds	up,	it	strongly	favors	
the	second	hypothesis,	the	local,	intracellular	storage	of	acquired	information.	It	will	
be	interesting	to	see	just	how	much	information	is	stored	locally	at	that	earliest	
possible	stage	of	sensory	signal	processing,	and	at	what	level	of	abstraction.	

In	short	there	is	now	evidence	that	acquired	information	relevant	to	the	
interpretation	of	sensory	signals	may	be	stored	within	the	sensory	neurons	
themselves.	One	wonders	whether	the	evidence	for	learning	at	the	spinal	level	
(Windhorst	2007;	Wolpaw	2007)	will	lead	to	the	discovery	that	acquired	
information	relevant	to	the	regulation	of	muscle	activation	and	joint	control	is	
stored	within	the	motor	neurons	themselves.	

Back	to	Jerry	

What	I	lay	at	Jerry’s	door	is	an	insight	that—in	the	fullness	of	time—may	transform	
neuroscientists	conceptual	framework	in	ways	as	profound	as	the	transformation	in	
biochemists’	conceptual	framework	wrought	by	the	identification	of	the	molecular	
structure	of	the	gene.	Jerry	realized	that	there	must	be	symbols	in	the	brain,	just	as	
Mendel	realized	that	there	must	be	physically	mysterious	“particles”	in	seeds,	
particles	that	carried	heritable	information	from	generation	to	generation,	quite	
independently	of	whether	the	information	they	carried	was	expressed	in	the	
observable	structure	of	the	organisms	produced	in	any	one	generation.	The	physical	
realization	of	the	symbols	that	carry	acquired	information	is	at	this	time	as	
mysterious	as	was	the	physical	realization	of	Mendels’	particles.	Like	Mendel’s	
particles,	the	information	carried	by	these	symbols	is	often	not	expressed	in	
behavior.	Jerry	also	realized	that	there	must	be	computational	machinery	that	
operates	on	those	symbols,	the	machinery	that	embodies	the	syntax.	He	realized,	in	
other	words,	that	the	brain	must	have	a	language	in	exactly	the	sense	in	which	a	
computing	machine	has	a	language.	This	was	a	truly	profound	insight,	which	is,	of	
course,	why	it	has	also	generated	so	much	debate.	The	old	ways	of	thinking	die	hard,	
very	hard.	To	paraphrase	Planck,	science	progresses	one	funeral	at	a	time.	
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If,	as	I	expect,	Jerry’s	insight	comes	to	inform	the	foundations	of	neuroscientific	
thinking,	there	will	be	great	ironies.	Jerry	is	conspicuous	among	cognitive	scientists	
for	his	indifference	to	the	question	how	the	language	of	thought	might	be	
implemented	in	the	brain.	He	commented	on	neurobiologically-inspired	theories	of	
cognition	only	so	far	as	to	point	out	that	they	lacked	the	productivity,	systematicity	
and	compositionality	that	are	seen	in	a	machine	that	has	a	language.	He	and	Zenon	
Pylyshyn	rightly	argued	that	these	properties	were	such	salient	properties	of	
thought	that	any	model	of	thought	that	denied	these	properties,	either	explicitly	or	
implicitly,	as	neurobiologically	inspired	cognitive	theories	generally	did,	was	clearly	
untenable	in	the	face	of	the	behavioral	evidence	(Fodor	and	Pylyshyn	1988).	Jerry	
was	sublimely	indifferent	to	the	protests	from	some	philosophers	and	many	
psychologists	and	cognitive	psychologists	that	there	was	no	neurobiological	
foundation	for	the	language	of	thought.	Like	the	classical	geneticists	who	were	
unperturbed	by	the	biochemists	claims	that	the	gene	was	biochemically	
incomprehensible,	Jerry	believed	in	the	implications	of	the	data	he	knew.	He	was	
unperturbed	by	the	neuroscientists	who	took	absence	of	neurobiological	evidence	
to	be	evidence	of	neurobiological	absence.	What	an	irony	it	will	be	if	the	language	of	
thought	hypothesis	becomes	the	key	to	understanding	the	neurobiology	of	cognition.	

I	am	immensely	excited	by	the	prospect	that	Jerry’s	insight	may	finally	begin	to	
influence	neuroscientific	thinking.	Until	the	recent	discoveries	that	I	have	described,	
I	thought	there	was	no	prospect	that	we	would	know	the	physical	identity	of	the	
brain’s	symbols	in	my	lifetime.	I	thought	there	was	even	less	prospect	that	we	would	
know	the	machinery	that	implemented	its	computational	operations.	I	suspected	
that	the	answers	were	to	be	found	at	the	molecular	level	within	neurons,	rather	than	
at	the	circuit	level,	where	neuroscientists	have	assumed	they	must	lie	and	where,	
therefore,	they	have	looked	for	them	to	little	avail	throughout	my	career.	Until	these	
recent	discoveries,	there	was	no	neurobiological	evidence	in	favor	of	the	hypothesis	
that	acquired	information	is	stored	intracellularly	at	the	molecular	level,	where	it	is	
operated	on	by	molecular	level	computational	machinery.	Now	that	there	is	at	least	
some	neurobiological	evidence	pointing	in	that	direction,	my	hope	is	that	the	
molecular	biologists	will	jump	in	and	begin	a	serious	quest	for	the	intracellular	
molecular	biology	of	neural	memory	and	computation.	
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