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Babytalk Part I



Statistical Learning by 8-Month-Old Infants
Jenny R. Saffran, Richard N. Aslin, Elissa L. Newport

Learners rely on a combination of experience-independent and experience-dependent
mechanisms to extract information from the environment. Language acquisition involves
both types of mechanisms, but most theorists emphasize the relative importance of
experience-independent mechanisms. The present study shows that a fundamental task
of language acquisition, segmentation of words from fluent speech, can be accom-
plished by 8-month-old infants based solely on the statistical relationships between
neighboring speech sounds. Moreover, this word segmentation was based on statistical
learning from only 2 minutes of exposure, suggesting that infants have access to a
powerful mechanism for the computation of statistical properties of the language input.
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Birdsong & human sound systems:
what’s the same?

Bengalese finch
(Lonchura striata domestica)
Source: K. Okanoya, 2003

In well formed words, sibilants agree in the feature [anterior].

— ) Examples (Sapir and Hojier 1967):

Jitter3 ‘we (dual) are lying’
dasdo:lis ‘he (4th) has his foot raised’

1
2
3. Tliteiz (hypothetical)
4. *dasdo:lif (hypothetical)




An animal model for human learning?
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Sound system components:
birds & people

“Beads on a string” model:

1. Beads — chunks or “states” that are categorical classes (remember: “s-
Sh”

2. Linear sequence — one state follows another, in constrained way

(e.g., “slo” starts a possible English word, but “rdz” does not)
= A finite-state automaton

Categorical production and perception
Address just one part of that: how do we find the "chunks” in the input?




Beads on a string

Navajo phonotactics:
s, | cannot precede one
another
(Source: Heinz, 2007

2010)
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hh "
hh 0.08, — é, 93"”7
aaa Yy b \ .
O—L>02R 22, 5 s O—
A '.v 3 1 I'
\ T eekfff / e WL G
\ \ / [ga
\ 10.88 / ,,
g(g; ". ".‘ /' bhh 0.55 /
=Yy o022
\ \ /
\ X '
4)
\ ,
~_ 044




The simplest linear patterns = regular

ba:d - bat; de:g - dek (Heinz, 2007)
[i:t3, *[i:te:z
(Chandlee & Jardine, 2013)

©Roy Beckham

Lonchura striata domestica. Source: K. Okanoya, 2003



What’s the same?

 “Critical period” for learning from external experience

* Babbling (subsong), practice & self-practice

* Plasticity frozen at puberty (by hormonal change — testosterone)
e Left-lateralization for system

* Brain circuitry control

* Beads on a string structure



Songbirds — Zebra finch “critical period”
learning

auditory learning
young birds listen to
and memorize the
song of an adult
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Table 1. Distinctive Features of American English Consonants
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All English sounds

Table 1. Distinctive Features of American English Consonants
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“Use it or lose it” Learning

* In English, we have words like these: right-light; fry-fly; fur-fill

* So, English baby must retain this contrast — it is the difference in 2
distinctive features, lateral and continuant

 What about other languages?

* Korean: Korea-Seoul — not contrastive

 Result: Korean babies lose r/l distinction, lose the ability to discriminate
* Use of categories and rules results in decline of perceptual abilities

* No animals do this with human speech; Korean dogs and monkeys do not
lose the |/r contrast



syllable

T

onset rime
| /\
r vowel coda
| |
I t
syllable
onset rime
| N
f vowel coda
| |
u r

syllable
onset rime
| /\
1 vowel coda
| |
I t
syllable
onset rime
| /\
f vowel coda
| |
i 1

r, | in both the onset and the coda, so must be distinguished (also: fly/fry)

Other languages?

13



Challenge: segmentation
twasbrilligandtheslithytovesdidgyre

{pabiku,tibudo,daropi,golatu}

pabikutibudodaropipabiku (sounds) ~
tibudodaropitibudodaropi U
pabikudaropipabikugolatu -
tibudogolatutibudogolatu -’
golatudaropipabikutibudo
daropigolatudaropipabiku '
tibudogolatudaropigolatu *
daropigolatupabikutibudo " ,
pabikutibudodaropigolatu.. 2 A
c,/‘; —

pigola daropi  tudaro
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Challenge: Combining Inference with Cognitive Constraints
(How real people solve real problems can help real computers)

Problem: twasbrilligandtheslithytovesdidgyreandgimble

“Standard” solution: prettybaby pre-ty-ba-by

Graph of transition probabilities: Pr(x,,,|x;) & look for local minima

“Standard” claim: works great; “stats is all you need” (Science, 1996)

pabiku tibudo darop{vgolatu daropi

pabikutibudodaropigolatu..
Pr(bi|pa)=1.0; Pr(ku|bi)=1.0; Pr(ti|ku)=0.
Pr(bu|ti)=1; Pr(do|bu)=1.0; Pr(da|do)=0.3
Pr(ro|da)=1; Pr(pi|ro)=1.0; Pr(go|pi)=0.3
Pr(la|go)=1.0; Pr(tu|la)=1.0 ..

pigola—> pi golatu Works great? NO!!!

tudaro—> tu daropi



Actual results on actual speech to children: works lousy
What's the answer? But, add a ONE universal constraint
about human language and it works GREAT!

Precision and Recall, Pure Stat
Interference vs. Stat Inference + UG,
250,000 child-directed examples

Using the universal constraint

120

100 - 95.9 93.4
. 391 Only transitional statistics
(=
S 60 -
S 41.6

40 -

23.3
20 7 -
0
SI . SI-UG
e precision = true positives

true positives

* recall = fe positives + false negatives

What IS this ONE universal constraint???? HINT: you all know it!

16



® QuickTime Player File Edit View Window Help ® @ O = 100%(=F <) Mon5:24PM EEus. 3 berwick Q =

Eng-NA-MOR/Brent/c1/c1-0917.cha | CHILDES Transcript Browser

> | < | + @ childes.psy.cmu.edu/browser/index.php Eng-NA-MOR/Brent/c1/c1-0917.c (Al Reader Q3]
H Index of /~...r1/OpenStep Can the Pi-t...berryPi? - 4 Can the Pi-t...aspberryPi? 65083 Class Home Economics a... York Times Corpus of C...lish (COCA) Recursive D...nt Treebank Minimalist Machine coalescent.dk »
VSTAPP... ‘\7 HUANG... 7\ supple... 7\ minhla... | /~rdiet... \ /NeXTfi... | hups:/... i people.... [ Linking... \ Beyond... | Eng-N. \ Minima... | Release... »| + ‘ 1

CHILDES/ Eng-NA-MOR/ Brent/ c1/

o ¢1-0902.cha 2 [+] 0 @Loc: Eng-NA-MOR/Brent/c1/c1-0917.cha
o ¢1-0917.cha 7 [+] 1 @PID:  11312/c-00015454-1
o ¢1-0930.cha 47 [+] 2 @Begin
o c1-1014.cha ¥7 [+] 3 @lLanguages: eng
o ¢c1-1027.cha 2 Faa 4 @Participants: CHI Morgan Child , MOT Brenda Mother
o ¢1-1129.cha 7 [+] 5 @ID: eng|Brent|CHI|0;9.17|female|||Child]| ||
8 c1-1207‘cha o ‘ 6 @ID: eng|Brent |[MOT| ||| |[Mother| ||
R 7 @Birth of CHI: 28-MAR-1996
o ey, PRl 8 @edia: cl-t14jan97, audio
o=g1309.cha Sl 9  @ate: 14-JAN-1997
© ci-1321.cha €4[+] 10 *MOT: pull it up yoursel(f) ! »
© c1-1320.cha €2 [3 11 %mor: v|pull pro|it prep|up pro:refl|yourself !
© c1-1417.cha ¥4 [+] 12 %gra: 1|@|ROOT 2|1|0BJ 3|1|JCT 4|3|POB] 5|1|PUNCT
© c1-1504.cha ¢ [+] 13 *MOT: hands up ! >

14 &mor: v|hand-3S adv|up !
15 %gra: 1|0|ROOT 2|1|JCT 3|1|PUNCT

16 *MOT: hands up ! >
Command line: Eng-NA-MOR/Brent/ic1/ 17 *mor: v|hand-3S adv|up !
(chains ¢/ (Run | 18 %gra: 1|0|ROOT 2|1|3CT 3|1|PUNCT
Continuous playback: On:(s) | Off:() 19 *MOT: now hands out ! <
Dependent tiers: %add:m] | %graui/l%mor:g/l 20 %mor: adv|now v|hand-35 ad"lc’ut !
e 21 %gra: 1|2|3CT 2|0|ROOT 3|2|JCT 4|2|PUNCT
7 22 *MOT: there we go &=noise . >

23 &mor: adv|there pro:sub|we v|go .
24 %gra: 1|3|3CT 2|3|SUB] 3|0|ROOT 4|3|PUNCT

25 *MOT: what are you doing &=noise ? »
26 &mor: pro:wh|what aux|be&PRES pro|you part|do-PRESP ?
27 %gra: 1|4|LINK 2|4|AUX 3|4|SUBJ 4|0|ROOT 5|4|PUNCT
28 *MOT: you pointing at me ? >
29 &mor: pro|you part|point-PRESP prep|at pro:obj|me ?
30 %gra: 1]/2|SUBJ 2|0O|ROOT 3|2|JCT 4|3|POBJ 5|2|PUNCT
31 *MOT: hey . ’
32 &mor: co|hey .
33 %gra: 1|0|INCROOT 2|1|PUNCT
34 *MOT: hey I'll point at you too . >
35 &mor: co|hey pro:sub|I~mod|will v|point prep|at pro|you post|too .
36 %gra: 1|/4|COM 2|4|SUBJ 3|4|AUX 4|0|ROOT 5|4]ICT 6|5|P0OB] 7|6|PQ 8|4|PUNCT
37 *CHI: &=vocalize . > 17
38 *MOT: let's wash that hand ! >
0ot il lach dot lihat plband )




Strategies for learning words: 6 methods

1. Use isolated words, e.g., “ball”, “hey”
* What does corpus analysis show?
* Mother-to-child speech: 9% of all utterances are isolated words
This strongly correlates with timing of child learning that word — good!
What’s the big open question?
How? — bad!
Does length of utterance work?
Isee vs. spaghetti
NO workable algorithm proposed for extracting isolated words...



Strategies for learning words

2. Use statistics

* Transitional probabilities (TPs) between adjacent syllables, A, B

* TP(A—>B) = Prob(AB)/Prob(A), where probabilities are estimated by
frequencies

* Word boundaries at points of local minima

* E.g., TP(pre—>tty) & TP(ba—>by) both > TP(tty—>ba), so “tty-ba” local minimum
and so likely word break

* This is the essence of the Saffran, Aslin, Newport experiment w/ 8.5 month
old babies exposed to 2 minutes of artificial speech



Strategies for learning words

2. Statistical methods, continued:
Evolutionary: probably old? Hauser et al. 2001, cotton-top tamarind monkeys

B58 M.D. Hauser et al. / Cognition 78 (2001) B53—B64
Table 1
Design of Languages A and B and test items comparing words versus non-words or words versus part-
words
Language A Language B
Words tupiro, golabu, bidaku, padoti tudaro, pigola, bikuti, budopa
Test words tupiro, golabu tudaro, pigola
Test non-words dapiku, tilado tigobu, kudabi

Test part-words tibida, kupado pabiku, tibudo
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Concealed
speaker

Hypothesis:
Like babies; orient
to novel stimuli
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M.D. Hauser et al. / Cognition 78 (2001) B53—B64 B61
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Fig. 3. Mean (standard error) percent of word versus partword test trials on which subjects responded, for
Language A (left) and Language B (right). Black bars indicate responses to word trials, stippled bars
indicate responses to partword trials.



Strategies for learning words

3. Metrical segmentation

* 90% of English content words (? What’s that?) are stress initial in
conversational speech (Cutler & Carter, 1987)

So maybe stressed syllable = beginning of word

Back to crying - Evidence for metrical detection: 7.5 month old babies detect
strong-weak pattern in English fluent speech better than weak-strong pattern

“taris” extracted by babies as word from “guitaris” — why?
What are the problems?
* Language specific (Consider French vs. German again)

* Bootstrapping: How does infant know the metrical pattern for their language?
* Use known words, but where do these come from?



Strategies for learning words

4. Phonotactic constraints

* What makes a well-formed syllable?
Pight, clight, zight vs. flight, dnight, ptight. Which are “possible” English
words, which are not?
Only certain consonant clusters are valid “onsets” in English (Halle, 1978)
Language specific, so must come from experience (plus any initial templates)
How might this be useful?

* Sound sequence “vt”, break word between “v” and “t”

* Problem: sometimes clusters that don’t occur in onsets are in fact parts of words

e Can you think of one?
* “embed” - mb



Syllabification in a sense logically prior —

Syllabllnfa nt keeps track of tp’s over syllables

/\ syllable
onset rime /\

| P onset rime
r vowel coda | N
{ ‘|c 1 vowel coda
syllable syllable | |
/\ /\ I t
onset rime onset rime
f vowel coda f vowel coda

| | | |
u I i ]
r, | in both the onset and the coda, so must be distinguished (also: fly/fry)
Other languages?
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Strategies for learning words

5. Allophonic constraints
e Say what?
* “tab” vs. “cat” — what’s the difference in the “t”?
* Aspirated vs. unaspirated: word boundaries can have articulatory diffs
e Again assumes infant can pick these out
* Doesn’t this assume infant can first find the boundaries?
* Nitrates vs. night rates



Strategies for learning words
6. Memory

* Sound patterns extracted and stored in memory for later use — helps with new
words

* 8-month old infants can store “python” “vine” “peccaries” and remember them
as familiar when embedded in stories with speaker and word order variation,
even though it’s highly unlikely they know what these words are

* Can then use these patterns to extract new words: e.g., if you learn “savory” you
can use that to learn “unsavory”

1 n

No one factor at work — let’s see how they can be put together

I”

Use linguistic representations in conjunction with “smal
power

processing

Now let’s evaluate some models — first a word about measuring
performance



|
all word segmentations in (test) set

done correctly=

false negatives

correct segmentations in test set
reported by the program=

Precision and Recall
(0-100%)

How many selected
items are relevant?

Precision = —

Precision

Usually give weighted average of Precision and
Recall, “F-measure”

true positives false positives

relevant elements (Segmented test Set)
1

= all word segmentations,
done incorrectly

true negatives

incorrect segmentations
reported by the program

selected elements = segmentations returned by the program

How many relevant
items are selected?

Recall = —

Recall
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The input: mother’s speech to children, from
“Brown corpus” in CHILDES

How to make training data? Run this through CMU Pronouncing Dictionary
Divides word into syllables and tells us stress

“cat”> KAE1T

Stress runs from O (stress free), 1 (primary stress), 2 (secondary), through 9
“catalog” > K AE1 T AHO L AOO G”,

“catapult” > KAE1I TAHOPAH2LT

Then group phonetic segments into syllables

Easy in English: maximize length of onset so long as it is a valid consonant
cluster

Example. “Einstein” is “AY1 N ST AYO N” by CMU, in syllables: AY1IN STAYON
because /st/ is longest onset; /nst/ is longer but violates English phonotactics



The training corpus

* Finally, remove punctuation and word boundaries, but keep utterance
boundaries between sentences (line breaks in CHILDES)

* Result: 226,178 words, consisting of 263,660 syllables
* OK, let’s see how well the various methods do....first, statistics & tp



Transitional probability in practice

* On the plus side: it is the only language-independent method (so no chicken-
and-egg problem)

* Has been shown to be influential in children early (as early as 7 months),
compared to, e.g., stress

* Assume: child has syllabified speech perfectly (Why?)

e Assume: child has neutralized effects of stress among variants of syllables
(Why? There are 58,884 unique syllables not looking at stress; if you count

stress, lots more difft syllables — must compute tp’s for all of the pairs you
find)

e Assume: data for training same as data for testing (Why? Unusual ML
condition... Why do this?)



Process entire training corpus & then

* There is a word boundary between syllables AB and CD
if TP(A—>B) >TP(B—>C) < TP(C->D)



How well does this work?

* Lousy. Precision is 41.6%, Recall is 23.3 %

* In other words, about 60% or words posited by statistical learner are
not English words, and almost 80% of actual English words are not
extracted, even under these favorable learning conditions

* Why?
* Clue: 226,178 words, consisting of 263,660 syllables
* So most words are 1 syllable. What does tp do?

* Most words are 1 syllable, followed by another 1 syllable word 85% of
the time



Transitional Probability absolute value of changes
declines rapidly as # of syllables processed grows —
there are so many syllables the tp can’t change
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The unique stress constraint (USC)

* The only known mechanism that takes advantage of the abundance
of single word utterances

* If the learner hears an utterance that contains exactly one primary
stress, she can immediately conclude that such utterance, regardless
of its length, can and can only be a single word

* W,S,5,5;W,= 3 words W,S; S, S;W,

* Can help statistical learning: S;W,;W,W,S, provides cues: at least 2
words, and the string of W’s has a word boundary somewhere —
perhaps use transitional probability there



USC has fewer assumptions than metrical
segmentation learning

Metrical segmentation assumes:

a) Recognize strong vs. weak syllables

b) A collection of reliably segmented words

c) A computation that finds the dominant pattern in the set of words
For USC, only (a) required

It’s universal — no chicken-and-egg problem

But how do kids pick up stress? We seem to hear it, buthow?



How do children figure out stress for the word
segmentation problem?
Consonant-Vowel pattern in babbling: universal

syllable
/\
onset rime
| P
pl vowel coda
word | |
/\ & ns
w S
A /\
> W S w (a) Syllable structure of the word plans.
/\ —_
prac ti ty
Cv CvV

The right representation is combinatorial




This way? The Beat Generation
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Hightesesesnee ¢ 1The Beat Generation

\

{, {* "1 {* [* 111

RN

© =

%1 %, 1 * *}}} {* {**1
o> 0

lambic: mark left as “head” & project to next level

Suggests: there is an operation that takes two items & “merges” them



Why do we say the USC is “innate”

e Where could it come from?

» Statistical learning can’t generate a good candidate set, and it’s the
only other language independent method known

» USC is also a “negative” principle — how do you know it’s not violated
by some “other” example?

* If child only gets positive examples, then this is hard to figure out
(Why?)

* In any case, we can now come up with a variety of models that use
the USC



Transitional probabilities + USC

1. Apply usual statistical analysis to get transitional probabilities

a) If two strong syllables are adjacent (S,S,), a word boundary is posited in
between

b) If there are more than 1 weak syllable between 2 strong syllables (S;W...WS,)
then a word boundary is posited where the pairwise tp is at the local
minimum

2. (a) solves monosyllabic problem; (b) has some complications — if
multiple local minima (“drinking the champagne”)

3. Results: precision = 73.5%; recall = 71.2% (comparable to best
methods in literature which use a very computationally intensive
optimization algorithm)



Algebraic learning

* Can we do without statistical learning?
* Note that computational burden of tp’s is not trivial
» 58,448 unique syllable pairs

* Whenever learner sees an occurrence of, e.g., A, it has to adjust
values of all the B’s in tp(A—>B)

* So learner has to adjust values of potentially thousands of tp’s for
every syllable processed in input — might be too computationally
costly




Algebraic segmentation

* Suppose we use known words to bootstrap novel words
* 8 month olds can retain sound patterns in memory (Juscyk & Holmes, 1997)
» Kid can extract “big” from “bigsnake” and so extract “snake”

e Other evidence kids can do this:
* “hiccing up” from “hicc-up”
e “two dults” from “a-adult”

* The method works like this:

1.
2.

Use the USC

At word boundary, this might not work: S;W,..W,S, (‘languageacquisition’) there are 2
possibilities:

a) IfbothSW,, and W,,; | <jare part of known owords on both sides, then W; must be a word

b) Otherwise, word boundary somewhere in the string of W’s, and USC doesn’t help

In case (b), we can use two strategies: (1) agnostic: skip this one for now; (2) pick random

position in the W’s to make two words, one containing S, the other one S,. But in both
cases, no word is added to dictionary (learner is unsure)



Results

Model Precision | Recall | F-measure (a = 0.5)
SL 41.6% | 23.3% 0.298
SL + USC 73.5% | 71.2% 0.723
Algebraic agnostic 85.9% | 89.9% 0.879
Algebraic random 95.9% | 93.4% 0.946




Summary

* Word segmentation can get off the ground only through use of language-
independent means: experience-independent linguistic constraints such as
the Universal Stress Constraint (USC) & experience dependent statistical
learning are the only candidates we know so far

e Statistical learning does not scale up to realistic settings of language
acquisition

* Simple principles drawing on USC can improve statistical learning and
improve it, but computational of statistical learning may still be prohibitive

* Algebraic learning under the USC, with trivial computational cost, in
principle universal, outperforms all other segmentation models



