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infection of murine cells (15) and transgenic
mice expressing human CD4 (16) and pro-
vides a rationale for transgenic approaches to
developing animal models of HIV disease.
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Statistical Learning by 8-Month-Old Infants
Jenny R. Saffran, Richard N. Aslin, Elissa L. Newport

Learners rely on a combination of experience-independent and experience-dependent
mechanisms to extract information from the environment. Language acquisition involves
both types of mechanisms, but most theorists emphasize the relative importance of
experience-independent mechanisms. The present study shows that a fundamental task
of language acquisition, segmentation of words from fluent speech, can be accom-
plished by 8-month-old infants based solely on the statistical relationships between
neighboring speech sounds. Moreover, this word segmentation was based on statistical
learning from only 2 minutes of exposure, suggesting that infants have access to a
powerful mechanism for the computation of statistical properties of the language input.

During early development, the speed and
accuracy with which an organism extracts
environmental information can be ex-
tremely important for its survival. Some
species have evolved highly constrained
neural mechanisms to ensure that environ-
mental information is properly interpreted,
even in the absence of experience with the
environment (1). Other species are depen-
dent on a period of interaction with the
environment that clarifies the information
to which attention should be directed and
the consequences of behaviors guided by
that information (2). Depending on the
developmental status and the task facing a
particular organism, both experience-inde-
pendent and experience-dependent mecha-
nisms may be involved in the extraction of
information and the control of behavior.

In the domain of language acquisition,
two facts have supported the interpretation
that experience-independent mechanisms
are both necessary and dominant. First,
highly complex forms of language produc-
tion develop extremely rapidly (3). Second,
the language input available to the young
child is both incomplete and sparsely rep-
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resented compared to the child's eventual
linguistic abilities (4). Thus, most theories
of language acquisition have emphasized
the critical role played by experience-inde-
pendent internal structures over the role of
experience-dependent factors (5).

It is undeniable that experience-depen-
dent mechanisms are also required for the
acquisition of language. Many aspects of a
particular natural language must be ac-
quired from listening experience. For exam-
ple, acquiring the specific words and pho-
nological structure of a language requires
exposure to a significant corpus of language
input. Moreover, long before infants begin
to produce their native language, they ac-
quire information about its sound properties
(6). Nevertheless, given the daunting task
of acquiring linguistic information from lis-
tening experience during early develop-
ment, few theorists have entertained the
hypothesis that learning plays a primary
role in the acquisition of more complicat-
ed aspects of language, favoring instead
experience-independent mechanisms (7).
Young humans are generally viewed as
poor learners, suggesting that innate fac-
tors are primarily responsible for the ac-
quisition of language.

Here we investigate the nature of the
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infection of murine cells (15) and transgenic
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Birdsong	&	human	sound	systems:
what’s	the	same?

Bengalese	finch
(Lonchura striata domestica)
Source:	K.	Okanoya,	2003
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An	animal	model	for	human	learning?

Bengalese	finch
(Lonchura striata domestica)
Source:	K.	Okanoya,	2003

Berwick et al. Birdsong and human language evolution

FIGURE 3 | Continued

FIGURE 3 | Continued
(A) Sonogram of an adult male Bengalese finch. X -axis is in seconds, Y -axis
in kilohertz. Song syllables are demarcated by alphabet letters. (B)
Finite-state transition network corresponding to the song syllable sequence
in (A). The network begins at the extreme left. Open circles correspond to
states in the network, with transitions on arcs labeled with the syllables
corresponding to those identified from the sonogram in (A). Note that loops
in the network can go back to previous states. (C) A finite-state transition
network that generates syllable sequences containing at least one or more
warbles, ending with a rattle. (D) A finite-state transition network encoding
an “unbounded” dependency, in the sense that a syllable sequence
beginning with ab must always end with exactly a single f. Note that
syllable sequences may be arbitrarily long, due to the loop labeled with a c
from one state back to itself. Thus, even though the ab and f may be
arbitrarily far apart, a finite-state network can still determine whether this
constraint holds. (E) A finite-state transition network that “counts” any
number of warbles between four through seven, inclusively. The transitions
labeled with ε denote so-called “epsilon transitions” where an output
syllable is not produced when moving between states. (F) A recursive
transition network labeled S that uses S itself on the transition looping
from state 2 back to state 2 as a subroutine to generate an indefinitely large
number of properly nested warble-rattle pairs. States are numbered for
convenience. (G) A finite-state transition network that describes a
hypothetical zebra finch song motif, as represented by a sequence of seven
syllables, a through g. Note that if there are no nested dependencies, then
the state Motif could be reached from any other state as part of a larger
network describing the overall song.

In order to meet the demands of real-time speech/signed
language production, in some way the human language sys-
tem must map structured syntactic word combinations onto a
sequence of motor commands, feeding a sensory–motor artic-
ulatory/gestural system for vocal or signed output, “flattening”
the structure onto the output channel so that vocal output is
sequentially ordered; see Stevens (2000). Conversely, the human
processor recovers hierarchical structures from a time-ordered
sound sequence. We might call this output projection external-
ization. It is typically here that linear precedence relationships
hold among word elements in regards to their output as artic-
ulatory sequences, as was noted in the Introduction. Importantly,
the detailed study of human sound systems has established that
only linear precedence relations are required for the description
of such systems; see Heinz and Idsardi (2011) and Wohlgemuth
et al. (2010) for further discussion. To consider another simple
language example here, the plural marker for apple, the so-called
z morpheme in English, is placed at the end of apple, rather
than the front, yielding apples (pronounced applez), rather than
zapple. Conversely, if one regards the perception of language as
mapping the time stream of acoustic signals into an internal
representation, one must invert this process, recovering the hier-
archical structures associated with sentences from the “flattened”
signal.

From this standpoint, it is misleading to equate birdsong vocal
production with the totality of human language. As we will now
argue in some detail, birdsong seems more comparable to human
language sound systems, not human language syntax. As we will
argue, both human and bird sound systems are describable solely
in terms of a network of what basic sound elements can come
before or after one another – either syllable chunks in the case of
birdsong, or so-called phonemes in the case of human language.

Frontiers in Evolutionary Neuroscience www.frontiersin.org April 2012 | Volume 4 | Article 5 | 10
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Sound	system	components:	
birds	&	people

“Beads	on	a	string”	model:
1. Beads	– chunks	or	“states”	that	are	categorical classes	(remember:	“s-

sh”	
2. Linear	sequence	– one	state	follows	another,	in	constrained	way
(e.g.,	“slo”	starts	a	possible	English	word,	but	“rdz”	does	not)
=	A	finite-state automaton	
Categorical	production and	perception
Address	just	one	part	of	that:	how	do	we	find	the	”chunks”	in	the	input?
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Navajo	phonotactics:
s,	∫	cannot	precede	one	

another
(Source:	Heinz,	2007;	

2010) q1
q2

q3

s

∫

t	,o
t,	o,	s

t,	o,	∫	

Bengalese	finch	song

Beads	on	a	string
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The	simplest	linear	patterns	=	regular	

Lonchura striata domestica.	Source:	K.	Okanoya,	2003

ba:d →	bat;	de:g →	dek (Heinz,	2007)	
∫i:tʒ,	*∫i:te:z
(Chandlee &	Jardine,	2013)	
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What’s	the	same?

• “Critical	period”	for	learning	from	external	experience
• Babbling	(subsong),	practice	&	self-practice
• Plasticity	frozen	at	puberty	(by	hormonal	change	– testosterone)
• Left-lateralization	for	system
• Brain	circuitry	control
• Beads	on	a	string	structure

8



Songbirds	– Zebra	finch	“critical	period”	
learning
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All	English	sounds
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“Use	it	or	lose	it”	Learning

• In	English,	we	have	words	like	these:	right-light;	fry-fly;	fur-fill
• So,	English	baby	must	retain this	contrast	– it	is	the	difference	in	2	
distinctive	features,	lateral and	continuant
• What	about	other	languages?
• Korean:	Korea-Seoul	– not	contrastive
• Result:	Korean	babies	lose r/l	distinction,	lose	the	ability	to	discriminate
• Use	of	categories	and	rules	results	in	decline of	perceptual	abilities
• No	animals	do	this	with	human	speech;	Korean	dogs	and	monkeys	do	not
lose	the	l/r	contrast

12



r,	l	in	both	the	onset	and	the	coda,	so	must	be	distinguished	(also:	fly/fry)	
Other	languages? 13



Challenge:	segmentation
twasbrilligandtheslithytovesdidgyre

pabikutibudodaropipabiku
tibudodaropitibudodaropi
pabikudaropipabikugolatu
tibudogolatutibudogolatu
golatudaropipabikutibudo
daropigolatudaropipabiku
tibudogolatudaropigolatu
daropigolatupabikutibudo
pabikutibudodaropigolatu…

{pabiku,tibudo,daropi,golatu}

(sounds)

pigola daropi tudaro
14



Challenge:	Combining	Inference	with	Cognitive	Constraints
(How	real	people	solve	real	problems	can	help	real	computers)

Problem:

“Standard”	solution:		prettybaby pre-ty-ba-by

Graph	of	transition	probabilities:	Pr(xi+1|xi)	&	look	for	local	minima

“Standard”	claim:	works	great;	“stats	is	all	you	need”	(Science,	1996)

pabikutibudodaropigolatu…
Pr(bi|pa)=1.0; Pr(ku|bi)=1.0; Pr(ti|ku)=0.3, 
Pr(bu|ti)=1; Pr(do|bu)=1.0; Pr(da|do)=0.3
Pr(ro|da)=1; Pr(pi|ro)=1.0; Pr(go|pi)=0.3
Pr(la|go)=1.0; Pr(tu|la)=1.0 …

twasbrilligandtheslithytovesdidgyreandgimble

pigola→ pi golatu

pabiku tibudo daropi golatu daropi

Works	great?	NO!!!

tudaro→ tu daropi
15



Actual	results	on	actual	speech	to	children:	works	lousy
What’s	the	answer?		But,	add	a	ONE universal	constraint	

about	human	language	and	it	works	GREAT!

Precision and Recall, Pure Stat 

Interference vs. Stat Inference + UG, 

250,000 child-directed examples
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What	IS	this	ONE	universal	constraint????	HINT:	you	all	know it!

Only	transitional	statistics

Using	the	universal	constraint
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Strategies	for	learning	words:	6	methods

1. Use	isolated	words,	e.g.,	“ball”,	“hey”
• What	does	corpus	analysis	show?
• Mother-to-child	speech:	9%	of	all	utterances	are	isolated	words
• This	strongly	correlates	with	timing	of	child	learning	that	word	– good!
• What’s	the	big	open	question?
• How?	– bad!
• Does	length	of	utterance	work?	
• Isee vs.	spaghetti
• NO	workable	algorithm	proposed	for	extracting	isolated	words…
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Strategies	for	learning	words

2. Use	statistics
• Transitional	probabilities	(TPs)	between	adjacent	syllables,	A,	B
• TP(A→B)	=	Prob(AB)/Prob(A),	where	probabilities	are	estimated	by	
frequencies
• Word	boundaries	at	points	of	local	minima
• E.g.,	TP(pre→tty)	&	TP(ba→by)	both	>	TP(tty→ba),	so	“tty-ba”	local	minimum	
and	so	likely	word	break
• This	is	the	essence	of	the	Saffran,	Aslin,	Newport	experiment	w/	8.5	month	
old	babies	exposed	to	2	minutes	of	artificial	speech
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Strategies	for	learning	words

2. Statistical	methods,	continued:
Evolutionary:	probably	old?	Hauser	et	al.	2001,	cotton-top	tamarind	monkeys
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Strategies	for	learning	words

3. Metrical	segmentation
• 90%	of	English	content	words	(?	What’s	that?)	are	stress	initial	in	
conversational	speech	(Cutler	&	Carter,	1987)
• So	maybe	stressed	syllable	=	beginning	of	word
• Back	to	crying	- Evidence	for	metrical	detection:	7.5	month	old	babies	detect	
strong-weak	pattern	in	English	fluent	speech	better	than	weak-strong	pattern
• “taris”	extracted	by	babies	as	word	from	“guitaris”	– why?
• What	are	the	problems?

• Language	specific		(Consider	French	vs.	German	again)
• Bootstrapping:	How	does	infant	know	the	metrical	pattern	for	their	language?
• Use	known	words,	but	where	do	these	come	from?
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Strategies	for	learning	words

4. Phonotactic	constraints
• What	makes	a	well-formed	syllable?
• Pight,	clight,	zight vs.	flight,	dnight,	ptight.		Which	are	“possible”	English	
words,	which	are	not?
• Only	certain	consonant	clusters	are	valid	“onsets”	in	English	(Halle,	1978)
• Language	specific,	so	must	come	from	experience	(plus	any	initial	templates)
• How	might	this	be	useful?

• Sound	sequence	“vt”,	break	word	between	”v”	and	“t”
• Problem:	sometimes	clusters	that	don’t	occur	in	onsets	are	in	fact	parts	of	words
• Can	you	think	of	one?
• “embed”	→	mb
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r,	l	in	both	the	onset	and	the	coda,	so	must	be	distinguished	(also:	fly/fry)	
Other	languages?

Syllabification	in	a	sense	logically	prior	–
infant	keeps	track	of	tp’s over	syllables
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Strategies	for	learning	words

5. Allophonic	constraints
• Say	what?
• “tab”	vs.	“cat”	– what’s	the	difference	in	the	“t”?
• Aspirated	vs.	unaspirated:	word	boundaries	can	have	articulatory	diffs
• Again	assumes	infant	can	pick	these	out
• Doesn’t	this	assume	infant	can	first	find	the	boundaries?
• Nitrates	vs.	night	rates
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Strategies	for	learning	words
6. Memory
• Sound	patterns	extracted	and	stored	in	memory	for	later	use	– helps	with	new	
words
• 8-month	old	infants	can	store	“python”	“vine”	“peccaries”	and	remember	them	
as	familiar	when	embedded	in	stories	with	speaker	and	word	order	variation,	
even	though	it’s	highly	unlikely	they	know	what	these	words	are
• Can	then	use	these	patterns	to	extract	new	words:	e.g.,	if	you	learn	“savory”	you	
can	use	that	to	learn	“unsavory”

No	one	factor	at	work	– let’s	see	how	they	can	be	put	together
Use	linguistic	representations	in	conjunction	with	“small”	processing	
power
Now	let’s	evaluate	some	models	– first	a	word	about	measuring	
performance
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all	word	segmentations		in	(test)	set
done	correctly=

=	all	word	segmentations,	
done	incorrectly

=	segmentations	returned	by	the	program

correct	segmentations	in	test	set
reported	by	the	program=

incorrect	segmentations	
reported	by	the	program

(Segmented	test	set)

Precision	and	Recall
(0-100%)

Precision Recall
30

Usually		give	weighted	average	of	Precision	and	
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The	input:	mother’s	speech	to	children,	from	
“Brown	corpus”	in	CHILDES

• How	to	make	training	data?	Run	this	through	CMU	Pronouncing	Dictionary
• Divides	word	into	syllables	and	tells	us	stress
• “cat”→	K	AE1	T
• Stress	runs	from	0	(stress	free),	1	(primary	stress),	2	(secondary),	through	9
• “catalog”	→	K AE1	T AH0	L	AO0	G”, 
• “catapult”	→ K	AE1	T	AH0	P	AH2	L	T
• Then	group	phonetic	segments	into	syllables
• Easy	in	English:	maximize	length	of	onset	so	long	as	it	is	a	valid	consonant	
cluster
• Example.	“Einstein”	is	“AY1	N	ST	AY0	N”	by	CMU,	in	syllables:	AY1N	STAY0N	
because	/st/	is	longest	onset;	/nst/	is	longer	but	violates	English	phonotactics32



The	training	corpus

• Finally,	remove	punctuation	and	word	boundaries,	but	keep	utterance	
boundaries	between	sentences	(line	breaks	in	CHILDES)
• Result:	226,178	words,	consisting	of	263,660	syllables
• OK,	let’s	see	how	well	the	various	methods	do….first,	statistics	&	tp
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Transitional	probability	in	practice
• On	the	plus	side:	it	is	the	only	language-independent	method	(so	no	chicken-
and-egg	problem)
• Has	been	shown	to	be	influential	in	children	early	(as	early	as	7	months),	
compared	to,	e.g.,	stress
• Assume:	child	has	syllabified	speech	perfectly	(Why?)
• Assume:	child	has	neutralized	effects	of	stress	among	variants	of	syllables	
(Why?	There	are	58,884	unique	syllables	not	looking	at	stress;	if	you	count	
stress,	lots	more	difft syllables	– must	compute	tp’s for	all	of	the	pairs	you	
find)
• Assume:	data	for	training	same	as	data	for	testing	(Why?	Unusual	ML	
condition...	Why	do	this?)
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Process	entire	training	corpus	&	then

• There	is	a	word	boundary	between	syllables	AB	and	CD	
if	TP(A→B)	>TP(B→C)	<	TP(C→D)
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How	well	does	this	work?

• Lousy.		Precision	is	41.6%,	Recall	is	23.3	%
• In	other	words,	about	60%	or	words	posited	by	statistical	learner	are	
not	English	words,	and	almost	80%	of	actual	English	words	are	not	
extracted,	even	under	these	favorable	learning	conditions
• Why?
• Clue:	226,178	words,	consisting	of	263,660	syllables
• So	most	words	are	1	syllable.		What	does	tp do?
• Most	words	are	1	syllable,	followed	by	another	1	syllable	word	85%	of	
the	time
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Gambell & Yang Word Segmentation

during each training interval. For instance, TP(A!B) will change as long as the learner sees
AB occurring jointly as well as A occurring with something other syllable. In other words,
though each training interval consists of 1,000 syllables, many thousands of TPs may be
changing during this time. On average, then, each TP may change only by a truly miniscule
value: 10–30 divided by 58,448, the total number of unique syllable pairs. When we expand
the interval to 10,000 syllables, during which it is far more likely that the value of every TP
would change, we obtain the average |�TP| to be 0.0028: again, a minute adjustment of
the TP statistics. These calculations suggest that by using a larger set of training data, the
estimated TPs will certainly be closer to their realistic values, but the improvement is likely
to be marginal.
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Transitional	Probability	absolute	value	of	changes	
declines	rapidly	as	#	of	syllables	processed	grows	–
there	are	so	many	syllables	the	tp can’t	change	

much
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The	unique	stress	constraint		(USC)

• The	only	known	mechanism	that	takes	advantage	of	the	abundance	
of	single	word	utterances
• If	the	learner	hears	an	utterance	that	contains	exactly	one	primary	
stress,	she	can	immediately	conclude	that	such	utterance,	regardless	
of	its	length,	can	and	can	only	be	a	single	word
• W1S1S2S3W2⇒ 3	words	W1S1		S2		S3W2

• Can	help	statistical	learning:	S1W1W2W3S2 provides	cues:	at	least	2	
words,	and	the	string	of	W’s	has	a	word	boundary	somewhere	–
perhaps	use	transitional	probability	there
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USC	has	fewer	assumptions	than	metrical	
segmentation	learning

Metrical	segmentation	assumes:
a) Recognize	strong	vs.	weak	syllables
b) A	collection	of	reliably	segmented	words
c) A	computation	that	finds	the	dominant	pattern	in	the	set	of	words
For	USC,	only	(a)	required
It’s	universal	– no	chicken-and-egg	problem
But	how do	kids	pick	up	stress?		We	seem	to	hear it,	buthow?
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How	do	children	figure	out	stress	for	the	word	
segmentation	problem?

Consonant-Vowel	pattern	in	babbling:	universal

(a) Syllable structure of the word plans.

(b) The structural representation of stress where feet are constructed from syllables 
iteratively following language-specific instructions. The symbols s and w denote the 
relative prominence of the units that are merged, also reflecting language-specific 

choices.  

Figure 2. The composition of phonological structures.

S

NP

They

VP

V

are

NP

flying airplanes

S

NP

They

VP

VP

are flying

NP

airplanes

unlockable

un lockable

lock able

unlockable

unlock

un lock

able

syllable

onset

pl

rime

vowel

æ

coda

ns

word

w

s

CCVC

prac

s

CV

ti

s

s

s

CV

ca

w

CV

li

s

CV

ty

1

S

NP

They

VP

V

are

NP

flying airplanes

S

NP

They

VP

VP

are flying

NP

airplanes

unlockable

un lockable

lock able

unlockable

unlock

un lock

able

syllable

onset

pl

rime

vowel

æ

coda

ns

word

w

s

CCVC

prac

w

CV

ti

s

s

s

CV

ca

w

CV

li

w

CV

ty

1

The	right	representation	is	combinatorial

(a) Syllable structure of the word plans.

(b) The structural representation of stress where feet are constructed from syllables 
iteratively following language-specific instructions. The symbols s and w denote the 
relative prominence of the units that are merged, also reflecting language-specific 

choices.  

Figure 2. The composition of phonological structures.
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This	way?	The	Beat	Generation

Tell	me	not	in	mournful	numbers…
/				∪ /			∪ /							∪ /					∪

Yields	beat	pattern
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The	Beat	Generation

{*, {* *}}} {*, {* *}}} {*, {* *}}}

{*, {* *}}} {*, {* *}}}

{*, {* *}}}

* * * *

High {*, {* *}}}

* *

*          *         *         *           *          *         *          *      
Tell		me		not					in	mournful	numbers…

Iambic:	mark	left as	“head”	&	project	to	next	level

Suggests:	there	is	an	operation	that	takes	two items	&	“merges”	them
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Why	do	we	say	the	USC	is	“innate”

• Where	could	it	come	from?
• Statistical	learning	can’t	generate	a	good	candidate	set,	and	it’s	the	
only	other	language	independent	method	known
• USC	is	also	a	“negative”	principle	– how	do	you	know	it’s	not	violated	
by	some	“other”	example?		
• If	child	only	gets	positive	examples,	then	this	is	hard	to	figure	out	
(Why?)
• In	any	case,	we	can	now	come	up	with	a	variety	of	models	that	use	
the	USC
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Transitional	probabilities	+	USC

1. Apply	usual	statistical	analysis	to	get	transitional	probabilities
a) If	two	strong	syllables	are	adjacent	(S1S2) ,	a	word	boundary	is	posited	in	

between
b) If	there	are	more	than	1	weak	syllable	between	2	strong	syllables	(S1W…WS2)	

then	a	word	boundary	is	posited	where	the	pairwise	tp is	at	the	local	
minimum

2. (a)	solves	monosyllabic	problem;	(b)	has	some	complications	– if	
multiple	local	minima	(“drinking	the	champagne”)

3. Results:	precision	=	73.5%;	recall	=	71.2%	(comparable	to	best	
methods	in	literature	which	use	a	very	computationally	intensive	
optimization	algorithm)

44



Algebraic	learning

• Can	we	do	without	statistical	learning?
• Note	that	computational	burden	of	tp’s is	not	trivial
• 58,448	unique	syllable	pairs
• Whenever	learner	sees	an	occurrence	of,	e.g.,	A,	it	has	to	adjust	
values	of	all	the	B’s	in	tp(A→B)
• So	learner	has	to	adjust	values	of	potentially	thousands of	tp’s for	
every	syllable	processed	in	input	– might	be	too	computationally	
costly
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Algebraic	segmentation
• Suppose	we	use	known	words	to	bootstrap	novel	words
• 8 month	olds	can	retain	sound	patterns	in	memory	(Juscyk &	Holmes,	1997)
• Kid	can	extract	“big”	from	“bigsnake”	and	so	extract	“snake”
• Other	evidence	kids	can	do	this:

• “hiccing up”	from	“hicc-up”
• “two	dults”	from	“a-adult”

• The	method	works	like	this:
1. Use	the		USC	
2. At	word	boundary,	this	might	not	work:		S1W1…WnS2 (‘languageacquisition’)	there	are	2	

possibilities:
a) If	both	SiWi-1 and	Wj+1,	I <	j	are	part	of	known	owords on	both	sides,	then	Wj must	be	a	word
b) Otherwise,	word	boundary	somewhere	in	the	string	of	W’s,	and	USC	doesn’t	help	

3. In	case	(b),	we	can	use	two	strategies:	(1)	agnostic:	skip	this	one	for	now;	(2)	pick	random	
position	in	the	W’s	to	make	two words,	one	containing	S1	the	other	one	S2.		But	in	both	
cases,	no	word	is	added	to	dictionary	(learner	is	unsure)
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Results

47

Gambell & Yang Word Segmentation

The logic behind the agnostic learner is that the learner is non-committal if the learning data
contains uncertainty unresolvable by “hard” linguistic constraints such as USC.11 This could
arise for two adjacent long words such as “languageacquisition”, where two primary stresses
are separated by multiple weak syllables as in the case of (6b). It could also arise when the
input data (casual speech) is somewhat degraded such that some primary stresses are not
prominently pronounced, as discussed in 5.2. While the agnostic learner does not make
a decision when such situations arise, it can be expected that the words in the sequence
S1Wn

1 S2 will mostly like appear in combinations with other words in future utterances,
where USC may directly segment them out. The random learner is implemented as a base-
line comparison, though we suspect that in actual language acquisition, the learner may
invoke the language-specific Metrical Segmentation Strategy, rather than choosing word
boundaries randomly, in ambiguous contexts such as S1Wn

1 S2.
Note further that in both versions of the algebraic model, no word is added to the

lexicon when the learner is unsure about the segmentation; that is, both algebraic learn-
ers are conservative and conjectures words only when they are certain. This is important
because mis-segmented words, once added to the lexicon, may lead to many more mis-
segmentations under the subtraction algorithm. In section 6.1, we discuss ways in which
this assumption can be relaxed.

Table 1 summarizes the segmentation results from the two algebraic learners, along
with those from earlier sections on statistical learning.

Model Precision Recall F-measure (↵ = 0.5)
SL 41.6% 23.3% 0.298

SL + USC (5) 73.5% 71.2% 0.723
Algebraic agnostic (7a) 85.9% 89.9% 0.879
Algebraic random (7b) 95.9% 93.4% 0.946

Table 1: Performance of four models of segmentation. SL stands for the statistical learning
model of Saffran et al. (1996), while the other three models are described in the text.

It may seem a bit surprising that the random algebraic learner yields the best segmenta-
tion results but this is not unexpected. The performance of the agnostic learner suffers from
deliberately avoiding segmentation in a substring where word boundaries lie. The random
learner, by contrast, always picks out some word boundary, which is very often correct. And
this is purely due to the fact that words in child-directed English are generally short. Taken

11A comparable case of this idea is the Structural Triggers Learner (Fodor, 1998) in syntactic parameter
setting. We thank Kiel Christianson for pointing out this connection.
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Summary

• Word	segmentation	can	get	off	the	ground	only	through	use	of	language-
independent	means:	experience-independent linguistic	constraints	such	as	
the	Universal	Stress	Constraint	(USC)	&	experience	dependent statistical	
learning	are	the	only	candidates	we	know	so	far
• Statistical	learning	does	not	scale	up	to	realistic	settings	of	language	
acquisition
• Simple	principles	drawing	on	USC	can	improve	statistical	learning	and	
improve	it,	but	computational	of	statistical	learning	may	still	be	prohibitive
• Algebraic	learning	under	the	USC,	with	trivial	computational	cost,	in	
principle	universal,	outperforms	all	other	segmentation	models
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