6.S077 Recitation 6
Animal “language”: Child vs. Chimp

1. Postscript to segmentation
2. Can animals learn human language? The case of Nim
How do children figure out stress for the word segmentation problem?

Consonant-Vowel pattern in babbling: universal

(a) Syllable structure of the word plans.

The right representation is combinatorial.
High

\begin{tabular}{llllll}
The Beat Generation & \{*, \{* \}\}\} & \{*, \{* \}\}\} & \{*, \{* \}\}\} & \{*, \{* \}\}\} \\
\hline
\{*, \{* \}\}\} & * & \{*, \{* \}\}\} & * & \{*, \{* \}\}\} & * \\
\hline
\{*, \{* \}\}\} & * & \{*, \{* \}\}\} & * & \{*, \{* \}\}\} & * \\
\hline
\{*, \{* \}\}\} & * & \{*, \{* \}\}\} & * & \{*, \{* \}\}\} & *
\end{tabular}

\textbf{lambic:} mark left as “head” & project to next level

\textbf{Suggests:} there is an operation that takes \textbf{two} items & “merges” them
The Beat Generation

Tell me not in mournful numbers...

Yields beat pattern
The build-up of syntactic structure, however, is only one aspect of the possible associations triggered by the lexical element. Given this state of affairs, the brain basis of lexical semantics is still a matter of debate. Indeed, the interface between semantics and syntax depends on the specific combination of lexical and syntactic information. While processing abstract, under-specified representations such as “something to sit down on” in isolation in the absence of other context, semantic and syntactic information are processed in different brain regions. In the human brain, the left hemispheric Broca’s area and the posterior superior temporal gyrus (pSTG) appear to support the integration of semantic and syntactic information, as it is active when natural sentences that include function words and form of morphological elements (such as ‘un’ in ‘unhappy’) are processed, as long as even a minimal amount of semantic information in the form of abstract combinatorics in language processing of word-related lexical semantics cannot easily be teased apart from syntax. Still, the coordination of activity in pSTC and left Broca’s area during sentence comprehension has been demonstrated by functional connectivity analyses as well as analyses of long-range ventral pathway connecting the temporal cortex with the frontal operculum (FOP) via ventral pathways consisting of the arcuate fascicle. There are two streams with different termination points: one in the dorsal premotor cortex (PMC) (purple tract), and the other in BA 45 (blue tract). The ventral fibre tracts connecting the frontal cortex to the temporal cortex also consists of two streams: one going from BA 45 to the temporal, parietal and occipital cortex, involving the inferior fronto-occipital fascicle (pink tract); and the other going from the frontal operculum (FOP) to the anterior superior temporal gyrus (aSTG), involving the uncinate fascicle (dark grey tract). Adapted from ref. 24.
Rilling et al., Nature Neuroscience 2008; Frey et al., Brain and Language, 2014
The rest of language – not just word segmentation

Insert punctuation to make readable:

The professors name is Bob The professor’s name is Bob
The is not always an article

I want to put hyphens between the words fish and and and and and and chips in my fish and chips sign

I want to put hyphens between the words “fish” and “and” and “and” and “chips” in my fish and chips sign

Wouldn’t the sentence I want to put a hyphen between the words fish and and and and and and chips in my fish and chips sign have been clearer if quotation marks had been placed before fish and between fish and chips as well as after chips

Wouldn’t the sentence "I want to put a hyphen between the words Fish and And and And and Chips in my Fish-And-Chips sign" have been clearer if quotation marks had been placed before “Fish,” and between “Fish” and “and,” and “and” and “Chips,” as well as after “Chips”?
What about primates taught sign language? Does Nim follow a grammar? Why important?

“The continuity between primate language and early child language is believed to hold “the most promising guide to what happened in language evolution” (Hurford 2011, p590)
Teaching Language to an Ape

Sarah, a young chimpanzee, has a reading and writing vocabulary of about 130 “words.” Her understanding goes beyond the meaning of words and includes the concepts of class and sentence structure.

by Ann James Premack and David Premack
Researcher Challenges Conclusion That Apes Can Learn Language

By DAVID SOBEL

Thirteen years of research involving gorillas and chimpanzees that were apparently taught human language have been thrown into question by new evidence that, according to a researcher, shows that the apes may be doing nothing more remarkable than a dog does in learning to sit or heel. Investigators are already at loggerheads in what promises to be a major dispute about whether the human capacity for language is unique.

Herbert S. Terrace of Columbia University, who spent four years teaching sign language to a chimpanzee named Nim Chimpsky, now asserts that the success of his own and related efforts can be explained as mere prompting on the part of the experimenters and mistakes in reporting the data. "Much of the apes' behavior is pure drill," he said. "Language still stands as an important definition of the human species."

But R. Allen Gardner of the University of Nevada, the first to train a chimp, Wa-
Nim’s signs

- Apple me eat
- Banana Nim eat
- Banana me eat
- Drink me Nim
- Eat Nim eat
- Eat Nim me
- Eat me Nim
- Eat me eat
- Finish hug Nim
- Give me eat
- Grape eat Nim
- Hug me Nim
- Banana Nim banana Nim
- Banana eat me Nim
- Banana me Nim me
- Banana me eat banana
- Drink Nim drink Nim
- Drink eat drink eat
- Drink eat me Nim
- Eat Nim eat Nim
- Eat drink eat drink
- Eat grape eat Nim
- Eat me Nim drink
- Grape eat Nim eat
- Grape eat me Nim
- Me Nim eat me
- Me eat drink more
- Me eat me eat
- Give orange me give eat
 orange me eat orange
give me eat orange give
me you

About 125 signs; thousands of multiple combinations, mostly 2-sign combinations
Like Det Noun rule, many look like “functor” e.g., “give”, “more”, combined with open class sign, like
“apple”, “Nim”, or “eat”
Q: does Nim “know” human language?
Does Nim “have a grammar”?
Does Nim form rules?
Two views of language learning

Biology-driven: Open-ended, abstract syntactic Rules

Experience-driven, ‘blank slate’, usage-driven: Frozen “formulas”, very specific, imitations

Evidence that kids form rules always, from the start
But how do we know?
Two views of language learning – with very different implications

• The constructionist or usage view: infants start with “tabula rasa” and acquire fine little details, memorized word strings, repeating input from adults, and incrementally building up more and more general ‘templates’ or ‘formulaic patterns’ (“constructions”) – no pre-existing syntactic content attributed to child

e.g., Mother says: “more coffee”; Child: “more coffee”; M: “some coffee”; C: “some coffee”; but not “more juice” – no productive combinations until (perhaps much) later

• The biolinguistic view: infants start with knowledge of abstract syntactic categories like “Noun” and “Verb” and must learn details of how these categories behave, which words belong to which categories, etc.
Two views

• The two views lead to very different predictions about the trajectory of language learning, & what we expect to see kids do during language learning

• Constructionist: we ought to hear the kids repeat back exactly the words the adults say, very gradually forming matching what the parents say, certainly never something from another language

• If there is no input, then there ought to be no learning (blank slate + zero input → zero)

• Biolinguistic: we ought to hear very new things; child grammar and categories like adult grammar; we should hear things from other languages

• If there is no input, then we might see what the “initial state” looks like – how could we test this? (There is one way we’ll see later.)
How could we tell?

• If language acquisition is more experience-driven, we’d expect children to “track the data”—follow the pattern of the examples they get, basically “input matching”

• If it’s more internal, biologically-driven, we’d expect children to follow their “inner child” (which might mean some other adult language constraint, not attested by the input)

• Experience-driven: child English less articulated versions of “patterns” produced by adult English speakers

• Biologically-driven: child English differs from adult English in ways that adult languages differ from each other

• What does the evidence from child language acquisition tell us?
Rules vs. memorized “constructions”
how can we tell them apart?
Case 1: early child language (“two word” stage)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Formula (give + me) - tag team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Give me milk</td>
<td>Give me milk</td>
</tr>
<tr>
<td>Gimme coffee (my favorite)</td>
<td>Etc.</td>
</tr>
<tr>
<td>Gimme money (later child stage)</td>
<td></td>
</tr>
<tr>
<td>Gimme shelter (Winston’s favorite)</td>
<td></td>
</tr>
</tbody>
</table>

How to distinguish rules from frames/formulas? Errors kids make? No... (why?)
Litmus test to distinguish use of a grammar, i.e. “rule use” vs. “memorized sequences”

Apply to output from:
1. Children in 2-word stage (about 1 ½ – 2 yrs old)
2. Nim, the chimpanzee taught sign language from birth

We shall see that the test shows:
1. Children construct syntactic grammar rules, and have the abstract categories for them from the start
2. Nim does not use rules
But: Children don’t just replicate the input data

English kids:
 Want cookies
 Where going?
 How wash it?
 Erica took
 I put on

Are these “errors”? What’s the pattern?
But we never see this kind of error: Who see?

There’s another language that acts just like this; kids produce “want cookies”; “Erica took” etc…. but never “Who see”. Which language? Ans:
Chinese: can drop subject/object (topic) if you can recover it from discourse
In this respect, English kids (all kids) start out “as if” they are speaking Chinese
What tells English kids not to do this?

• English kids eventually don’t produces examples like Chinese (why not? What happens if they go to Dim Sum a lot?)

• What input tells them that every English sentence requires a Subject? Most of the time, there are Subjects that play a real role...but...

• “There are toys on the floor”

• (Spanish/Chinese: “are toys on the floor”) Hay juguetes en el suelo / 有地板上的玩具 (Yǒu dìbǎn shàng de wánjù)

• 1% of English sentences: “There are ...”

• Once again: you need an initial, universal constraint plus some statistics...
Intuition behind detection of grammar/rule use
Let’s focus on \{a, the\}

• Suppose Grammar rule: **productive**, freely used:
 a cookie, the cookie, a book → will also produce “the book”
 Free generation of the the two **parts** of the rule, Determiner + Noun

• Suppose “Template” or “usage”: fixed and only parrots back what has been found in the input [a-cookie] or [a-thing-to-eat]
 a cookie, the cookie, a book → will **not** generalize to produce “the book” (because not heard yet)

• Expected Difference in observed output:
1. Rule Use: Will see **all** Nouns in child’s vocabulary paired with both Determiners
2. Canned Template use: Will see only a **fraction** of the Nouns with both
A simple measure: overlap or “diversity”

• Let the child’s vocabulary be: {a, the} x {cookie, toy, bath}
• Suppose we observe kid say: a cookie, a toy, the toy, the bath (maybe multiple times)
• Then we say the diversity is $1/3 = 50\%$ (because only “toy” is seen with both Determiners)
• If all the Nouns in the child’s vocabulary appear with both Determiners, then the diversity is $3/3 = 100\%$ (fully productive rule use)
• If no Noun appears with both Determiners, the diversity is $0/3 = 0\%$
• Fully productive rule use = choose Determiner and Noun separately and combine them (but the observed frequency will depend on other factors)
Is diversity a good test to detect “rules” vs. “memorized frames”?

• Evidence for Frames or “Formula templates”? If frames, expect mismatch between children’s diversity and adults’ diversity (children’s diversity lower)

• Look at kids: 25% diversity, this seems low...

• So maybe they do just memorize...?

• Not so fast...
More careful study by Virginia Valian (2005) – child diversity is not low for \textit{a, the}

Fig. 1. Analysis 1: Overlap of \textit{a} and \textit{the} for children and mothers as a function of child MLU. (mean length of utterance)
In Analysis 2, we expanded the overlap analysis to include all determiners (see Appendix 3 for all words that were classified as determiners). In this version of the overlap calculation, the numerator for each child or mother was the number of nouns that occurred with more than one determiner type in that individual’s corpus; the denominator was the number of nouns that occurred at least once with any determiner.

RESULTS

Figure 2 and the second analysis column of Table 1 display overlap percentages for children and mothers based on all determiners (see Appendix 2 for raw numbers). Overlap calculated in this manner is more than double that calculated on the basis of a and the alone: children x 21.5%; mothers x 23.7%. That confirms our hypothesis that examining only a and the has the effect of understating the true degree to which an individual uses multiple determiners with the same noun. As with the a and the analysis, there is no significant difference between children and mothers (F(1, 20) = 1.75, n.s., partial eta squared = 0.08).

DISCUSSION

The results of Analysis 2 provide further evidence that children and their mothers do not differ significantly in the degree to which they use multiple determiners. The figure shows the overlap as a function of child MLU.

Fig. 2. Analysis 2: Overlap of all determiners for children and mothers as a function of child MLU.
Further doubt

• Wait a sec...look at the Brown corpus of 1 Million English words; that is by professional writers
• Diversity: only 25% of singular nouns that combine with either “a” or “the” combine with both
• Why?
So: sampling effects can lead to apparently low diversity

• Asymmetry: Nouns favor certain determiners over others by a factor of 2.5
• E.g., “the bathroom” is much more frequent than “a bathroom”, but “a bath” is much more frequent than “the bath”
• This means the chance of pick both determiners can fluctuate, due to chance
• A noun has to appear at least twice for the diversity (or overlap) to be > 0
• We will adjust for this by using Zipf’s law to estimate the probabilities for a particular determiner or a noun
Zipf’s law, word frequency \(\times \) rank = Constant
rank is inversely proportional to word’s frequency
Measuring what you say vs. what you know

• If a kid knows 100 distinct Noun types, and pairs them with “a” or “the” 500 times, how many of the 100 will be paired with them both, assuming the rule Determiner Phrase → Determiner Noun?

• Many of the 100 nouns will fall on Zipf’s long and flat tail – appearing just once, so will never meet up with both Determiners

• Others might turn up 2 or 3 times, but still be monogamous (like getting 3 heads in coin tosses)
What you say vs. what you know

• The grammar isn’t a fair coin anyway – sometimes a Noun has a favored determiner

• Imbalances: “the bathroom” more common than “a bathroom”, but we say “a bath” more often than “the bath” (not a part of grammar, which probably doesn’t encode the frequency of our biological needs) – but gives impression of grammatical absence

• Need statistical test of diversity profile based on the sample size and the vocabulary size (e.g., 500 and 100), correcting for Zipf-law sampling effects, to estimate probability of a particular Noun & probability of particular Determiner-Noun pairs
Using this to develop a statistical profile for use of a grammar rule

• What would it mean to use a rule *productively*?

• Combine Determiner + Noun freely – how to test this?

• This means picking items from each kind of category *independently*, as opposed to *dependently*

• For the case of 2 Determiners (*a, the*) and *N* Nouns, imagine three urns. One holds a blue marble (the Determiner, *a*); one holds a red marble (*the*) and the third holds *N* different green marbles, numbered 1, 2, ..., *N* (the Nouns)

• You randomly pick one of the green marbles, and *independently* one of the blue or red marbles, each with some probability (all with replacement); this gives you one particular *independent* Determiner-Noun pairing; repeat *S* times