Beyond “feeled dat”

6.S077 Recitation 9
Language & words: The Indeterminacy Problem

Possible Hypotheses
- Rabbit (whole object)
- Animal (superordinate)
- Flopsie (individual)
- Furry (property)
- Ear (part)
- Walk by (activity)
- Undetached rabbit parts

“Gavagai!”
A picture is worth a thousand words – and that’s the problem!
David Hume (1711-1776)

Learning by “ostension”:
“We show them the thing and tell them the name that stands for it”
Constraints Guide Learning
(Brown 1957, Rosch, Markman, Clark, Baldwin, Gleitman, Landau, ...)

Look! He’s sebbing!
Look! A seb!
Look, some seb!

- Syntactic Cues
 But also:
 - “Basic Level” Constraint
 - Whole Object Constraint
 - Mutual Exclusivity
 - Eye gaze-referent
 - Shape bias
 - Theory of mind
How do children learn words?

A baby hears a word like “shoes”, for example, over and over again in daily life as the one constant sound in a large variety of statements.
Laboratory shoe world
The real shoe world
What regularities are used to learn words?

Is this doll hard to see?
A blindfolded sighted child
Responds to the command
“Look up!”
The blind child’s response to “Look up!” is the same and different.
Two kinds of evidence – how syntax or situation can help (“bootstrapping”)

1. Within arm’s reach [the world]
2. Exploratory and perceptual [the structures]:

Can you see the cheese? [NP complement] because you can observe things
Let’s see if there’s cheese in the refrigerator [clausal complement because you can observe events]
Let’s see where the cheese is [because these are spatial perceptions]
We are looking at/*seeing/ the cheese [acts and states]
Syntactic Bootstrapping

Look! Glipping!

Look! He is glipping water into the glass!

Look! He is glipping the glass with water!

/glip/ means POUR

/glip/ means FILL

KEY HUMAN COMPETENCE:
Fast-mapping of words from syntax & semantics
Semantic Bootstrapping

Syntactic Bootstrapping: Distribution of *syntactic frames* disambiguates

(Gleitman 1990, Naigles 1990, Fisher et al 1994, ...)

/glip/ means POUR
Two Bootstrapping Proposals

• Children use syntactic cues to verb meaning (Gleitman 1990)

• Children use (verb) meaning to figure out how its arguments are realized in the syntax of the language (Pinker 1989)
Semantic Bootstrapping

Semantic Bootstrapping involves the pairing of a situational context with some syntactic pattern

- Kids learn syntax by first learning the semantic argument structure of the verb.
 - SWIM = one participant (the “swimmer”)
 - EAT = two participants (“eater”, “eatee”)
 - TAKE = two/three participants (“taker”, “takee”, and “person taken from”...).
But there are ambiguities

Temporal ambiguity
Situation ambiguity
Mental unobservable!

... more than just real-world observation...
Syntactic Bootstrapping
(Landau and Gleitman 1986, Naigles 1990)

Syntactic frames provide evidence for meaning:

H_1: arm wheel

H_2: cause to squat

/X and Y are gorping!/

/X is gorping Y!/
Language and n-grams (RR #2)
N-grams: Unigrams

• Given a corpus of text, the n-grams are the sequences of n consecutive words that are in the corpus

• example (12 word sentence)
 • the cat that sat on the sofa also sat on the mat

• n=1 (8 unigrams)
 • the 3
 • sat 2
 • on 2
 • cat 1
 • that 1
 • sofa 1
 • also 1
 • mat 1
N-grams: Bigrams

- **example** (12 word sentence)
 - the cat that sat on the sofa also sat on the mat

- **N=2 (8 bigrams)**
 - sat on 2
 - on the 2
 - the cat 1
 - cat that 1
 - that sat 1
 - the sofa 1
 - sofa also 1
 - also sat 1
 - the mat 1

2 words
N-grams: Trigrams

- **example** (12 word sentence)
 - the cat that sat on the sofa also **sat on the mat**
- **N=3** (9 trigrams)
 - *most language models stop here, some stop at quadrigrams*
 - too many n-grams
 - low frequencies
 - sat on the 2
 - the cat that 1
 - cat that sat 1
 - that sat on 1
 - on the sofa 1
 - the sofa also 1
 - sofa also sat 1
 - also sat on 1
 - on the mat 1
‘Modeling’ sentences

It was a bright cold day in April and the clock was striking...
Step 1, use chain rule

\[
P(S) = P(w_1, \ldots, w_n) \\
= P(w_1)P(w_2|w_1)P(w_3|w_1, w_2) \cdots P(w_n|w_1, \ldots, w_{n-1}) \\
= \prod_{i=1}^{n} P(w_i|w_1, \ldots, w_{i-1}) \\
P(S) = P(it) \times P(was|it) \times P(a|it, was) \times P(bright|it, was, a) \times \ldots \times P(April|it, was, a, bright, cold, day, in)
\]
Step 2: use Markov assumption to limit ‘history’ length (context)

Make the Markov assumption, either order 1 (1 word history), or order 2 (2 word history):

\[
P(w_i|w_1, \ldots, w_{i-1}) \approx P(w_i|w_{i-1})
\]
\[
P(w_i|w_1, \ldots, w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1})
\]

trigram model:

\[
P(S) \approx P(it) \times P(was|it) \times P(a|it, was) \times P(bright|was, a) \times \ldots \times P(April|day, in)
\]
Use *counts* as maximum likelihood estimates of ‘true’ probabilities

\[
P_{MLE}(w_i|w_{i-1}) = \frac{C(w_i, w_{i-1})}{C(w_{i-1})}
\]

Let’s try this out on the corpus G. Orwell, “1984”
Training set: main text; test set: Appendix, “Principles of Newspeak” – 1st sentence is:

\[<s>A \text{ good deal of the literature of the past was, indeed, already being transformed in this way } </s>\]
115,212 words
8,635 types
3,928 unique words (‘hapax legomena’)
49,524 bigrams
37,365 bigrams w/ frequency of 1
Where do estimates come from?

Let $S = w_1, w_2, \ldots, w_n$ be a word sequence. Given a training corpus, an intuitive estimate of the probability of the sequence $P(S)$, is the relative frequency of the string w_1, w_2, \ldots, w_n in the corpus, the maximum likelihood estimate (MLE):

$$P_{MLE} = \frac{C(w_1, \ldots, w_n)}{N}$$

where $C(w_1, \ldots, w_n)$ is the frequency or count of the string w_1, \ldots, w_n in the corpus and N is the total number of strings of length n.