Recitation 2009 November 13.

Jargon:
H is a direct cause of U
MIT is an indirect cause of U
H is a common cause of U and S
H and A have a common effect S
H and A are independent
Information about this world:
$\mathrm{P}(\mathrm{MIT})=1$
$\mathrm{P}(\mathrm{U} \mid \mathrm{H})=0.1$
$\mathrm{P}(\mathrm{H} \mid \mathrm{MIT})=0.05 ; \mathrm{P}(\mathrm{H} \mid \neg \mathrm{MIT})=0.001$
Now compute things

$$
\begin{aligned}
& \mathrm{P}(\mathrm{H})=\mathrm{P}(\neg \mathrm{MIT}) * \mathrm{P}(\mathrm{H} \mid \neg \mathrm{MIT})+\mathrm{P}(\mathrm{MIT}) * \mathrm{P}(\mathrm{H} \mid \mathrm{MIT})=0 * 0.001+1 * 0.05=0.05 \\
& \mathrm{P}(\mathrm{U})=\mathrm{P}(\neg \mathrm{H}) * \mathrm{P}(\mathrm{U} \mid \neg \mathrm{H})+\mathrm{P}(\mathrm{H}) * \mathrm{P}(\mathrm{U} \mid \mathrm{H})=.95 * .05+.05 * .1=.0525
\end{aligned}
$$

$\mathrm{P}(\mathrm{S})$ is more complex: two parents; summing out A :
$\mathrm{P}(\mathrm{S}) \quad=\mathrm{P}(\mathrm{S} \mid \mathrm{H}) \mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{S} \mid \neg \mathrm{H}) \mathrm{P}(\neg \mathrm{H})$
$\mathrm{P}(\mathrm{S} \mid \mathrm{H})=\mathrm{P}(\mathrm{S} \mid \mathrm{H}, \mathrm{A}) * \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{S} \mid \mathrm{H}, \neg \mathrm{A}) * \mathrm{P}(\neg \mathrm{A})$
$=(.86 * .025)+(.3 * .975)=.314$
$\mathrm{P}(\mathrm{S} \mid \neg \mathrm{H})=\mathrm{P}(\mathrm{S} \mid \neg \mathrm{H}, \neg \mathrm{A}) * \mathrm{P}(\neg \mathrm{A})+\mathrm{P}(\mathrm{S} \mid \neg \mathrm{H}, \mathrm{A}) * \mathrm{P}(\mathrm{A})$
$=(0 * .975)+\left(.8^{*} .025\right)=.02$
$\mathrm{P}(\mathrm{S}) \quad=.314^{*} .05+.02^{*} .95=.0347$
$\mathrm{P}(\mathrm{S})$ directly: sum over all possibilities, of the likelihood of that possibility times the likelihood of S given that possibility:
$\mathrm{P}(\mathrm{S} \mid \neg \mathrm{H}, \neg \mathrm{A}) \mathrm{P}(\neg \mathrm{H}, \neg \mathrm{A})+\mathrm{P}(\mathrm{S} \mid \neg \mathrm{H}, \mathrm{A}) \mathrm{P}(\neg \mathrm{H}, \mathrm{A})+\mathrm{P}(\mathrm{S} \mid \mathrm{H}, \neg \mathrm{A}) \mathrm{P}(\mathrm{H}, \neg \mathrm{A})+\mathrm{P}(\mathrm{S} \mid \mathrm{H}, \mathrm{A}) \mathrm{P}(\mathrm{H}, \mathrm{sA})=$
\qquad $+$ \qquad $+$ \qquad $+$ \qquad $=.0347$

But what if we want to "go backwards," i.e., compute $\mathrm{P}(\mathrm{H} \mid \mathrm{S})$?
Because we know that $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$, we can divide by $\mathrm{P}(\mathrm{A})$ or $\mathrm{P}(\mathrm{B})$ to find Bayes' Rule: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{H} \mid \mathrm{S})=\mathrm{P}(\mathrm{S} \mid \mathrm{H}) * \mathrm{P}(\mathrm{H}) / \mathrm{P}(\mathrm{S})=.314 * 0.05 / .0347=.45$
So knowing there's a sculpture raises the possibility of a hack from . 05 to .45 .
How is the probability of an art show affected?
$\mathrm{P}(\mathrm{A} \mid \mathrm{S})=\mathrm{P}(\mathrm{S} \mid \mathrm{A}) * \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{S})=$ \qquad $=.58$

$$
\mathrm{P}(\mathrm{~S} \mid \mathrm{A})=\mathrm{P}(\mathrm{~S} \mid \mathrm{A}, \mathrm{H}) * \mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{~S} \mid \mathrm{A}, \neg \mathrm{H}) * \mathrm{P}(\neg \mathrm{H})=.86^{*} .05+.8^{*} .95=.803
$$

So knowing there's a sculpture raises the possibility of an art show from .025 to .58 .

Explaining away

Now what if we know that S and A are both true? How strong is our belief in H, compared to when we knew only that S was true, and the value was .45 ?

Three variable version of Bayes' Rule (see wikipedia article):

$$
\begin{aligned}
\mathrm{P}(\mathrm{H} \mid \mathrm{S}, \mathrm{~A}) & =\mathrm{P}(\mathrm{~S} \mid \mathrm{H}, \mathrm{~A}) \mathrm{P}(\mathrm{H} \mid \mathrm{A}) / \mathrm{P}(\mathrm{~S} \mid \mathrm{A}) \\
& =.86^{*} .05 / .803 \\
& =.054
\end{aligned}
$$

So knowing there there is both sculpture and an art show drastically lowers our belief that there was a hack. The art show has "explained away" the sculpture, which no longer needs to be explained by a hack.

If we know that there is no art show to explain the sculpture, what can we say about the probability of a hack?
$\mathrm{P}(\mathrm{H} \mid \mathrm{S}, \neg \mathrm{A})=\mathrm{P}(\mathrm{S} \mid \mathrm{H}, \neg \mathrm{A}) \mathrm{P}(\mathrm{H} \mid \neg \mathrm{A}) / \mathrm{P}(\mathrm{S} \mid \neg \mathrm{A})$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~S} \mid \neg \mathrm{A}) & =\mathrm{P}(\mathrm{~S} \mid \neg \mathrm{A}, \neg \mathrm{H}) * \mathrm{P}(\neg \mathrm{H})+\mathrm{P}(\mathrm{~S} \mid \neg \mathrm{A}, \mathrm{H}) * \mathrm{P}(\mathrm{H}) \\
& =0 * .95+.3 * .05=.015
\end{aligned}
$$

$$
=.3 * .05 / .015=1
$$

Additional exercises:
$\mathrm{P}(\mathrm{H} \mid \mathrm{S}, \neg \mathrm{B})=\sim .4696$ which is $>\mathrm{P}(\mathrm{H} \mid \mathrm{S})=.45$--- why?
$\mathrm{P}(\mathrm{H} \mid \mathrm{S}, \neg \mathrm{B}, \mathrm{U})=\sim .639$ explain:

