
Discover ing Admiss ib le Heur is t ics by Abs t rac t i ng and Op t im i z i ng :
A Trans fo rmat iona l Approach

Jack M o s t o w and A r m a n d E . P r ied i t i s *
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

A b s t r a c t

W e present a n i m p l e m e n t e d m o d e l for d iscov-
e r i n g a class of s ta te-space search heur is t i cs .
F i r s t , abstractions of a s tate-space p r o b l e m are
genera ted b y d r o p p i n g i n f o r m a t i o n f r o m the
p r o b l e m d e f i n i t i o n . A n o p t i m a l s o l u t i o n p a t h
fo r a n y such a b s t r a c t e d p r o b l e m gives a lower
b o u n d o n t he t r u e d is tance t o the goa l . T h i s
b o u n d can be used as an admiss ib le eva lua-
t i o n f u n c t i o n fo r g u i d i n g t he base- level search.
M o r e o v e r , i f t h e a b s t r a c t e d goa l i s u n r e a c h -
able f r o m an a b s t r a c t e d s ta te , the o r i g i n a l s ta te
can safely be p r u n e d . However , us ing exhaus-
t i v e search t o eva lua te t h e abs t rac ted p r o b l e m
is genera l l y t o o s low. T h e r e f o r e , optimization
i s used to speed up the c o m p u t a t i o n o f t he
l ower b o u n d (or s o l v a b i l i t y t es t) , f o r examp le
b y f a c t o r i n g t h e abs t r ac te d p r o b l e m i n t o i n -
d e p e n d e n t s u b p r o b l e m s . We ana lyze the con-
d i t i o n s u n d e r w h i c h t h e r e s u l t i n g heu r i s t i c i s
faster t h a n b r u t e force search . O u r i m p l e m e n -
t a t i o n , n a m e d A B S O L V E R , has severa l genera l
t r a n s f o r m a t i o n s fo r a b s t r a c t i n g a n d s i m p l i f y i n g
s ta te-space p r o b l e m s , i n c l u d i n g a nove l m e t h o d
for p r o b l e m f a c t o r i n g . A B S O L V E R appears t o
be the f i r s t m e c h a n i c a l genera to r o f heur i s t i cs
g u a r a n t e e d t o f i n d o p t i m a l s o l u t i o n p a t h s . W e
have used i t t o de r i ve k n o w n a n d nove l heur is -
t i cs for va r i ous s ta te space p r o b l e m s , i n c l u d i n g
R u b i k ' s C u b e .

*The research repor ted here was supported in par t by the
Defense Advanced Research Projects Agency (D A R P A) un-
der Cont rac t number N00014-85-K-0116, in par t by the Na-
t iona l Science Founda t ion (NSF) under Gran t Number D M C -
8610507, and in par t by the Center for Computer A ids to I n -
dus t r ia l P r o d u c t i v i t y (C A I P) , an Advanced Technology Cen-
ter of the New Jersey Commission on Science and Technology,
at Rutgers Univers i ty , Piscataway, New Jersey. The opinions
expressed in th is paper arc those of the authors and do not re-
f lect any pol icies, either expressed or imp l ied , of any grant ing
agency. We thank Saul A m a r e l , Tony Bonner, A lex Borg ida ,
Chr is t ina Chang, Jan Chomick i , W i l l i a m Cohen, Mukesh
Da la i , R ichard Kor f , Michel le Kraus , Pat Langley, Sridhar
Mahadevan, T o m M i t che l l , Stan Raatz, Lou Steinberg, Chr is
Tong, and Bob Webber for their he lpfu l comments.

1 I n t r o d u c t i o n

F i n d i n g o p t i m a l (least cost) so lu t ions to la rge s ta te -
space p rob lems is genera l ly i n t r a c t a b l e w i t h o u t good
admiss ib le heur is t ics (eva lua t i on f u n c t i o n s t h a t r e t u r n
l o w e r - b o u n d est imates o f d is tance t o goa l) . W h e n cou-
p led w i t h search a l g o r i t h m s t h a t ensure o p t i m a l i t y , l ike
A* [N i l sson, 1980] or i t e ra t i ve -deepen ing A* (IDA*)
[K o r f , 1985a], such heur is t ics can reorder t h e search so
t h a t so lu t ions are f o u n d m u c h ear l ier . T h e y can also
reduce search by p r u n i n g states t h a t l ie mo re t h a n a
speci f ied d is tance f r o m the goa l . T h i s d i s tance m a y be
the exact so l u t i o n l e n g t h for p rob lems where i t i s k n o w n
a priori, an uppe r b o u n d on acceptab le s o l u t i o n l e n g t h ,
o r j u s t i n f i n i t y , i n w h i c h case the p red i ca te tests whe the r
the goal is reachable at a l l f r o m a g i ven s ta te .

However , good admiss ib le heur is t i cs can be h a r d to
f i nd . For examp le , af ter extensive s t u d y , K o r f was u n -
able to f ind a single good heur i s t i c eva lua t i on f u n c t i o n
for R u b i k ' s C u b e [Kor f , 1985b]. He conc luded t h a t " i f
there does exist a heur i s t i c , i ts f o r m is p r o b a b l y qu i te
c o m p l e x . "

T h e l o n g - t e r m goal o f our research is to deve lop a sys-
t e m t h a t can discover good admiss ib le heur is t i cs au to -
m a t i c a l l y , or a t least w i t h less user e f fo r t t h a n discover-
i n g t h e m b y h a n d . T h e m a i n c o n t r i b u t i o n o f th is paper
is a m o d e l for d iscover ing such heur i s t i cs , a n d i t s par-
t i a l i m p l e m e n t a t i o n i n a sys tem ca l led A B S O L V E R . We
nex t descr ibe how i t wo rks , a n d t h e n eva lua te i t as an
e x p l a n a t o r y m o d e l , as a genera t ive m o d e l , a n d as an au -
t o m a t i c d iscovery engine.

2 A B S O L V E R

O u r a p p r o a c h , i l l u s t r a t e d i n F igu re 1 , der ives admiss i -
b le heur is t i cs f r o m abs t rac t ions o f a state-space p r o b l e m .
A B S O L V E R is i n i t i a l l y g iven a S T R I P S - l i k e representa-
t i o n o f a p r o b l e m class. T h e d i s t i n c t i o n be tween a p r o b -
l e m class a n d a p r o b l e m ins tance is i m p o r t a n t because
t he ef for t o f d iscover ing a heur is t i c can be a m o r t i z e d over
a l l ins tances o f t he p r o b l e m class.

A B S O L V E R generates abs t rac t i ons b y d r o p p i n g in fo r -
m a t i o n f r o m th i s desc r i p t i on v i a a series o f a b s t r a c t i n g
t r a n s f o r m a t i o n s chosen f rom a ca ta log . An o p t i m a l so-
l u t i o n p a t h fo r any resu l t i ng abs t r ac te d p r o b l e m gives a
l ower b o u n d o n t r u e d is tance t o goa l . T h i s lower b o u n d
can t h e n be used as an admiss ib le eva lua t i on f u n c t i o n

Mostow and Prieditis 701

702 Machine Learning

funct ional ly equivalent to Manhat tan Distance by apply-
ing the drop_predicate t ransformation to the blank pred-
icate in the single-operator representation, or to xloeb
and yloeb in the Cartesian representation. In either case,
the abstraction is formed by dropping the boxed pred-
icates f rom the operators and goal. In the abstracted
problem space, each t i le can move to adjacent squares
regardless of where the other tiles and blank are.

2.3 O p t i m i z a t i o n

An abstracted problem can be sped up by one or more
of the opt imiz ing transformations listed in Table 2—
provided it satisfies their preconditions. Unfortunately,
most abstractions do not; Section 3.3 discusses the dif-
f icult problem of f inding abstractions that can be opt i -
mized.

In our example, we can use the factor t rans fo rms
t ion to spli t the abstracted problem into 8 independent
subproblems, one for each t i le. Next, factor simplifies
each subproblem by restr ict ing the set of operators to
those that are relevant to achieving the subgoal. For
example, the first subproblem has the goal at(a, 1) and
the restricted operator move(a, 5, S'). For an n by n ver-
sion of the Eight Puzzle, this step reduces the abstracted
problem f rom a search space containing (n 2 — l) n states
(n 2 possible locations for each ti le) to (n 2 — 1) indepen-
dently solvable problems of size n2, which can be solved
in to ta l t ime 0(nA).

If we use the Cartesian representation, we can obtain
further speedup by applying drop .precondition to xloc
in the yrnove operator and yloc in the xmove operator,
and factor ing in to separate subproblems for the x and y
dimensions. The result ing problem has 2n2 — 2 indepen-
dent subproblems, one for each t i le and each dimension.
For example, the first subproblem has the goal xloc(a, 1)
and the restricted operator xmove(a, X, X'). Each sub-
problem has a search space of size n, corresponding to
the number of columns (or rows). Thus the total t ime
to evaluate Manhat tan Distance is reduced to 0(n3). In
comparison, the standard closed-form formula for Man-
hat tan Distance takes t ime O(n2), the number of tiles.

2 .3 .1 T e s t i n g F a c t o r a b i l i t y
The factor t ransformat ion part i t ions the goal into mu-

tual ly independent sets of subgoals, and identifies the op-
erators relevant to each set. The independence property
ensures that the sum of the opt imal solution costs for
achieving each set is opt imal for achieving their union,
and is therefore admissible.

Thus in order for factor to be practical, we need an
efficient way to check that two sets of goals, g1 and g2,

2.4 U s i n g H e u r i s t i c s

Since the cost-effectiveness of heuristics derived by AB-
SOLVER is generally difficult to predict, they must be
evaluated empirically. ABSOLVER's performance ele-
ment inputs an in i t ia l state, a problem to solve, and
optionally a heuristic. The problem is represented as
a list of one or more subproblems, each consisting of a
subgoal and a set of operators w i th which to achieve i t .
The IDA* search algori thm is used to solve each sub-
goal, guided by the heuristic (or breadth-first if none is
given).

The heuristic is represented as an abstract problem.
It is evaluated by recursively invoking the same search
procedure on the abstract problem and returning the
length of the opt imal solution. Thus the computat ion
of the heuristic can itself be guided by a hierarchy of
successively more abstract problems.

To i l lustrate, consider the " X - Y Heuristic," which is
derived by factoring an abstracted Cartesian representa-
t ion of the Eight Puzzle into two subproblems, one for
each dimension. However, instead of dropping the blank
predicate to achieve factorabil i ty, the drop-precondition
transformation is used to drop informat ion about the
X dimension from the subproblem for the Y dimension,

Mostow and Prieditis 703

and vice versa. In effect, each subproblem projects the
puzzle onto one dimension. Thus a horizontal move is
allowed only in to the column containing the blank, and a
vert ical move is allowed only in to the row containing the
blank. X - Y is therefore more accurate than Manhat tan
Distance, which ignores the blank completely.

A l though X - Y yields a base-level branching factor of
only 1.19 for the Eight Puzzle (on a set of 18 random
instances), it requires a considerable amount of search
to compute. Th is search can be guided by Manhat tan
Distance. Unfortunately , even w i t h such guidance the
overall search t ime turns out to be about six times slower
than using Manhat tan Distance alone. I t remains to
be seen whether addi t ional opt imizat ions can make X-
Y better than Manhat tan Distance, which is the best
known heuristic for Eight Puzzle.

3 Evaluat ing A B S O L V E R
We now evaluate A B S O L V E R f rom three perspectives:
first, as an explanatory model that can rat ional ly recon-
struct exist ing heuristics, thereby ver i fy ing admissibi l i ty
by construct ion; next, as a generative model, helpful for
suggesting new heuristics; and f inal ly, as an automatic
discovery engine.

3.1 A B S O L V E R as an Exp lana to ry M o d e l

An explanatory model should be evaluated by its gen-
erality and coverage. A general model applies to a wide
class of domains. W i t h i n that class, a good model covers
a large propor t ion of the phenomena to be explained. We
tested ABSOLVER 's generality by apply ing i t to several
puzzle domains. We tested i ts coverage by t ry ing to red-
erive al l publ ished heuristics for three of them: the Eight

Pussle, Towers of Hanoi , and Mut i la ted Checkerboard.
The results are summarized in Table 3.

Th is evaluation simultaneously tested the model at
three different levels of specificity. Fi rst , it tested the
generality and coverage of the part icular catalog of trans-
formations across several domains. Since we knew our
in i t ia l catalog was incomplete, we were also interested
in ident i fy ing useful new transformations. In fact, these
problems served as our " t ra in ing data" for developing
the catalog in Table 1, so they should not be taken as a
test of its coverage, though they do demonstrate the gen-
eral i ty of the transformations used in mul t ip le domains.
Second, it tested the problem representation language,
since some heuristics might not be derivable in that rep-
resentation. Final ly, i t tested the general model of ab-
stract ion plus opt imizat ion , which might fai l to explain
some heuristics.

Wha t does it mean to rederive a heuristic? Clearly, it
is not necessary to rederive specific code. On the other
hand, funct ional equivalence alone is insufficient, since
an abstraction-based heuristic computed using search
may be much less efficient than the original version. We
therefore compared their computat ional complexity.

The results can be summarized as follows. We were
able to rederive funct ional equivalents w i t h ABSOLVER
for 6 of the 10 published heuristics, though w i th varying
efficiency relative to the or iginal versions.

The derived versions of # of Misplaced Tiles, # of
Misplaced Disks, and Colored Squares were al l compu-
tat ional ly equivalent to the originals.

Three of the derived heuristics were less efficient than
the original versions, owing to l imi tat ions in the chosen
problem representations and deficiencies in the catalog
of opt imiz ing transformations. The derived Manhat tan
Distance was slower by 0(n) (for n by n puzzles) because
it uses search to compute the number of moves needed
to get f rom row % to row i''. We have derived the closed
form expression \i — i'| on paper, bu t only by exploit ing
the numerical relationships impl ic i t in the adj relation to
induce a recurrence relat ion. Implement ing this deriva-
t ion in A B S O L V E R would require a more sophisticated
representation and an opt imiz ing transformation capa-
ble of inducing the recurrence relat ion. Similarly, the
derived versions of n-MaxSwap and n-Swap are slower
by 0(n2!) because they search for an ordered permuta-
t ion instead of count ing the number of swaps performed
by an efficient sort ing a lgor i thm. A challenging direc-
t ion for future work is automat ical ly recognizing when an
abstracted problem can be solved by adapt ing a known
algor i thm.

T w o of the heuristics have the wrong form: Sequence
Score is non-admissible, and A l te rnat ing Disks is a
heuristic on moves, not states.

Euclidean Distance breaks our model in an interesting
way, because it comes f rom adding knowledge about ge-
ometry. Our current model only generates abstractions
by dropping in format ion from the problem defini t ion.

The Blocking Disks heuristic is defined only for states
in which two of the pegs are empty. It was originally
derived by analyzing a recursive a lgor i thm for Towers of
Hanoi to compute the exact number of moves required.

704 Machine Learning

We see no way to derive this formula by abstracting
the problem representation. However, extending A B -
SOLVER to f ind special-case heuristics might be wor th-
while.

3.2 A B S O L V E R as a G e n e r a t i v e M o d e l

How good is our model at suggesting new heuristics?
Table 4 attempts to answer this question for several do-
mains. For each of these domains only "good" heuristics
are l isted; several other heuristics were derived but ap-
peared worse in terms of overall search t ime.

We were able to discover the first known (non-tr ivial)
admissible heuristic for the 3x3x3 Rubik's Cube. For
this problem, we started w i th a represention that par-
t i t ions the Cubies in to center, edge, and corner ones.
Dropping the edge predicate allows the operators to be
factored into those that affect corner Cubies and those
that affect center Cubies.

How good is this Center-Corner heuristic? For 13
problems randomly scrambled to depth 6 or less, it
reduces the branching factor from 9 (for breadth-first
search) to 5.9. The heuristic is computed by solving
the two subproblems. The subproblem for the six cen-
ter Cubies has three operators and is cheap to solve.
The subproblem for the eight corner Cubies is equivalent
to a 2x2x2 version of Rubik's Cube. Since our Prolog
implementat ion of IDA* only expands about 10 states
per second, we have not yet evaluated the Center-Corner
heuristic on deep random solvable instances of the Cube.

We were also able to derive some new admissible
heuristics for the Eight Puzzle. We have already de-
scribed the X - Y heuristic, which is more accurate than
Manhat tan Distance. Similarly, # Out of Column + #

ing each pentomino once—or to prove that it cannot be
done. When we attacked this problem, we believed it
was st i l l open. After proving it impossible, we found a
published proof that relies on remarkably similar tech-
niques [Golomb, 1965].

We started wi th a problem representation that par t i -
tions the squares into those in the inter ior of the Jagged
Square, those bordering the outer edges, and those bor-
dering the inner "hole." (We later added "corners").
Next, we applied the count t ransformation to each par-
t i t ion . Unfortunately, i t turned out that the resulting
admissible heuristic was not strong enough to prove the
problem impossible, i.e., the abstracted in i t ia l state ap-
peared solvable. We then hand-generated every possible
placement of the four most constraining pentominoes;
taking symmetry into account, there were only a dozen
or so. Finally, we executed exhaustive search in the ab-
stract space on each of these part ia l layouts to show the
impossibil i ty of completing any of them.

Table 4 also lists novel heuristics derived for some GPS
domains [Ernst and Goldstein, 1982]: Fool's Disk, In-
stant Insanity, and Th ink-A-Dot .

One lesson of these examples is the frequent impor-
tance of clever part i t ioning in the in i t ia l problem rep-
resentation: the border and interior squares in Jagged
Square; the corner, center, and edge Cubies in Ru-
bik's Cube; and the red and black squares in Mut i la ted
Checkerboard. At present such part i t ioning is supplied
as part of the in i t ia l representation.

3.3 A B S O L V E R a s a n A u t o m a t i c D i s c o v e r y
E n g i n e

As an automatic discovery engine, ABSOLVE R must be
evaluated by the tractability of f inding good heuristics

Mostow and Prieditis 705

in the space defined by the catalog of transformations.
There is a tradeoff between t ractab i l i ty and coverage,
since enlarging the catalog expands the space of derivable
heuristics but makes it costlier to explore.

The fu l l space defined by ABSOLVER 's current cata-
log of transformations is far too huge to explore exhaus-
tively. For example, the drop transformations alone can
be applied to any combinat ion of subgoals and operator
preconditions. For our nine-operator representation of
the 3x3x3 Rubik 's Cube, there are 126 subgoals and 312
preconditions: the number of combinations is astronom-
ical.

As a compromise between coverage and t ractabi l -
i ty, we implemented an exhaustive generator using the
coarser-grained drop-predicate as the only abstract ing
t ransformat ion and factor as the only opt imiz ing trans-
format ion. For the Eight Puzzle, i t took this generator
a few C P U seconds to test al l combinations of dropped
predicates. For the three-predicate, single-operator rep-
resentation, the only combinations w i t h more than one
factor yielded Manhat tan Distance and # Out of Place
Tiles (subject to the efficiency l imi tat ions discussed in
Section 3.1). The five-predicate, two-operator Carte-
sian representation yielded more heuristics: Horizontal
Distance, Vert ica l Distance, Manhat tan Distance (their
sum), analogs of al l three for Distance of Blank, # Out
of Column + # Ou t of Row, and Blank Out of Column
+ Blank Out of Row. For our three-predicate, nine-
operator representation of Rubik 's Cube, the generator
took over five hours, since our independence test for
factorabi l i ty current ly takes t ime quadratic in the size
of the largest t ransi t ive closure formed by the symbolic
backchaining step described in Section 2.3.1. Somewhat
surprisingly, there is only one factorable combinat ion—
the Center-Corner heuristic.

To escape f rom the coverage-tractabil i ty tradeoff, we
must use a better strategy than exhaustive generate-and-
test to find efficiently computable abstractions. We arc
investigating the use of means-ends analysis to ident i fy
which abstract ing transformations w i l l enable opt imiza-
tions. In part icular, i f we can efficiently identi fy which
applications of dropsubgoal and drop_precondition w i l l
make it possible to apply factor, we wi l l be able to find
the factorable abstractions w i thou t generating and test-
ing al l combinations of dropped goals and precondit ions.

4 R e l a t i o n to P rev i ou s W o r k

Figure 3 relates several previously reported proper-
ties that can hold between abstractions and heuristics
[Nilsson, 1980, Pearl, 1984].

The relat ion of certain abstractions to state-space
search heuristics was first suggested by Guida and So-
malvico [Guida and Somalvico, 1979] and Gaschnig
[Gaschnig, 1979], who described how such heuristics
might arise by using the depth of solutions in edge
supergraphs of the original state-space search graph
as lower-bounding heuristics. Such edge supergraphs
natural ly arise f rom dropping operator preconditions.
Later, Va l to r ta [Val tor ta, 1984], Pearl IPearl, 1984],
and Kib ler [Kibler, 1985] each proved that abstractions
such as those result ing f rom dropped operator precondi-

tions would guarantee monotone (and hence admissible)
heuristics. Our abstract ing transformations extend the
edge supergraph model of abstract ion to include node-
merging.

Va l to r ta proved that using a dropped-precondit ion ab-
stract ion direct ly as a heuristic w i l l always expand more
to ta l states in the two spaces than simply using breadth-
first search in the base space [Val tor ta, 1984]. Pearl later
pointed out that this l iab i l i t y might be overcome by fac-
tor ing the abstracted problem in to independent or serial-
izable subproblems, which might be possible even when
the original problem is not factorable [Pearl, 1984]. Fac-
tor ing reduces the to ta l search complexi ty f rom the prod-
uct of exponentials to their sum. Though elegant, these
methods were not implemented: the abstracting and op-
t imiz ing transformations were performed by hand.

Some work has been done on automatic generation
of abstractions in planning [Sacerdoti, 1974, Knoblock,
1988, Unruh et a/., 1987], but not for the class of admissi-
ble heuristics addressed here. For example, ABSTRIPS
used abstract solutions as skeletons for base solutions,
which tends to reduce planning t ime but can produce
sub-opt imal plans. Furthermore, ABSTRIPS discards
abstract solutions that cannot be refined into more con-
crete ones. In contrast, A B S O L V E R uses abstractions
solely to compute lower bounds and check solvability,
thereby not discarding potent ia l ly valuable informat ion
f rom non-refinable abstract solutions. Other systems
have been reported for serializing GPS subgoals [Ernst
and Goldstein, 1982], but they do not guarantee the op-
t i m a l l y of the solut ion paths.

In sum, while a few techniques have previously been
reported for abstract ing and s impl i fy ing state-space
problems, A B S O L V E R constitutes a novel at tempt to
automate, integrate, extend, and evaluate these tech-
niques.

5 Conc lus ion

A B S O L V E R appears to be the first mechanical genera-
tor of state-space heuristics guaranteed to f ind opt imal
solut ion paths. It achieves this admissibi l i ty property by

706 Machine Learning

decomposing the problem of discovering heuristics in to
generating abstractions and opt imizing their evaluation.

A B S O L V E R can be viewed at more than one level.
First , i ts t ransformational model provides a unifying
framework for characterizing and exploring a broad class
of admissible heuristics and understanding when they
are actual ly useful. Second, we have grounded the model
by implement ing a catalog of abstracting and opt imizing
transformations and using them to derive a number of
heuristics. T h i r d , we have demonstrated an automatic
generator that uses two of these transformations to find
efficiently computable heuristics.

As an explanatory model, ABSOLVER's coverage is
encouraging in one sense but deficient in another. Whi le
its small catalog of abstract ing transformations is ade-
quate to derive funct ional equivalents for many of the
published heuristics we looked at in several puzzle do-
mains, i ts opt imiz ing transformations are too weak to
compute some of them as efficiently as the originals. We
do not c laim the catalog is complete, and in fact expect
it to grow as we t r y to improve evaluation cost, derive
more heuristics, and explore other domains. The few
heuristics that d id not match ABSOLVER's underlying
model suggest interesting directions in which to extend
it.

As a generative model, A B S O L V E R has yielded some
novel heuristics, notably the first non-tr iv ia l admissible
heuristic for Rubik's Cube, and an interesting Eight Puz-
zle heuristic that is more accurate than the best known,
though somewhat less cost-effective. A l though all the
transformations reported here are ful ly implemented, the
techniques used in A B S O L V E R are useful for generating
heuristics even when applied by hand. In fact, that is
how we actual ly discovered most of the novel heuristics,
and how we proved the impossibi l i ty of a published lay-
out problem we thought was st i l l open. Subsequent im-
plementation of the derivations served to verify their cor-
rectness and to expose the use of addit ional techniques.
Thus the implementat ion is actually of secondary impor-
tance for discovering new heuristics, except to the extent
that it makes the techniques easier to apply.

As an automat ic discovery engine, ABSOLVER is l im-
i ted by the in t ractab i l i t y of exploring the space generated
by i ts fu l l catalog of transformations. I ts exhaustive gen-
erator uses only one abstract ing transformation and one
opt imiz ing t ransformat ion, thereby achieving tractabi l -
i ty at the cost of coverage. Nonetheless, it f inds inter-
esting heuristics in more than one domain.

Of the many possible directions for extending A B -
SOLVER, two seem especially compell ing. First, means-
ends analysis may make it possible to explore a richer
space of possible heuristics automatical ly. Second, A B -
SOLVER's sensit ivi ty to the in i t ia l problem representa-
t ion, and the importance of clever par t i t ion ing in discov-
ering novel heuristics, suggest that a few transformations
for representation-shift ing might significantly enrich the
space of discoverable heuristics.

References
[Amarel , 1983] S. Amare l . Representations in problem-

solving. In Methods of Heuristics. Lawrence Er lbaum

and Associates, Palo A l to , CA, 1983.

[Berlekamp et al, 1982] E. Berlekamp, J. Conway, and
R. Guy. Winning Ways for your Mathematical Plays:
Volume II. Academic Press, London, 1982.

[Ernst and Goldstein, 1982] G. Ernst and M. Goldstein.
Mechanical discovery of classes of problem-solving
strategies. JACM, 29 (l) : l - 23 , 1982.

[Gaschnig, 1979] J. Gaschnig. A problem-similari ty ap-
proach to devising heuristics. In Proceedings IJCAI-
6, pages 301-307, Tokyo, Japan, 1979. International
Joint Conferences on Art i f ic ial Intelligence.

[Golomb, 1965] S. Golomb. Polyominoes. Charles Scrib-
ners and Sons, New York, 1965.

[Guida and Somalvico, 1979] G. Guida and M. Soma-
lvico. A method for computing heuristics in problem
solving. Information Sciences, 19:251-259, 1979.

[Kibler, 1985] D. Kibler. Natural generation of heuris-
tics by transformating the problem representation.
Technical Report TR-85-20, Computer Science De-
partment, UC-Irvine, 1985.

[Knoblock, 1988] Craig A. Knoblock. Automat ical ly
generating abstractions for planning. In Proceedings of
the First International Workshop in Change of Rep-
resentation and Inductive Bias, Briarcl i f f, NY , 1988.
Philips Laboratories.

[Korf, 1980] R. Korf. Towards a model of representation
changes. Artificial Intelligence, 14(l) :41-78, 1980.

[Korf, 1985a] R. Korf. Depth-first iterative-deepening:
An opt imal admissible tree search. Artificial Intel l i-
gence, 27(2):97-109, 1985.

[Korf, 1985b] R. Korf. Learning to Solve Problems by
Searching for Macro-Operators. P i tman, Marshfield,
M A , 1985.

[Michalski, 1983] R.S. Michalski. A theory and method-
ology of inductive learning. In Machine Learning,
pages 83-134. Palo A l to , CA: Tioga Publishing Com-
pany, 1983.

[Nilsson, 1980] N. J. Nilsson. Principles of Artificial In-
telligence. Morgan Kaufman n, Palo A l to , CA, 1980.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem-Solving. Addison-
Wesley, Reading, M A , 1984.

[Sacerdoti, 1974] E. Sacerdoti. Planning in a hierarchy
of abstraction spaces. Artificial Intelligence, 5:115-
135, 1974.

[Tenenberg, 1988] J. Tenenberg. Abstraction in Plan-
ning. PhD thesis, University of Rochester, 1988.

[Unruh et ai, 1987] A. Unruh, P. Rosenbloom, and
J. Laird. Dynamic abstraction problem-solving in
Soar. In Proceedings of the Third Annual Confer-
ence on Aerospace Applications of Artificial Intelli-
gence, Dayton, O H , October 1987.

[Valtorta, 1984] M. Val tor ta. A result on the compu-
tat ional complexity of heuristic estimates for the A*
algor i thm. Information Sciences, 34:47-59, 1984.

Mostow and Prieditis 707

