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A b s t r a c t 

W e present a n i m p l e m e n t e d m o d e l for d iscov-
e r i n g a class of s ta te-space search heur is t i cs . 
F i r s t , abstractions of a s tate-space p r o b l e m are 
genera ted b y d r o p p i n g i n f o r m a t i o n f r o m the 
p r o b l e m d e f i n i t i o n . A n o p t i m a l s o l u t i o n p a t h 
fo r a n y such a b s t r a c t e d p r o b l e m gives a lower 
b o u n d o n t he t r u e d is tance t o the goa l . T h i s 
b o u n d can be used as an admiss ib le eva lua-
t i o n f u n c t i o n fo r g u i d i n g t he base- level search. 
M o r e o v e r , i f t h e a b s t r a c t e d goa l i s u n r e a c h -
able f r o m an a b s t r a c t e d s ta te , the o r i g i n a l s ta te 
can safely be p r u n e d . However , us ing exhaus-
t i v e search t o eva lua te t h e abs t rac ted p r o b l e m 
is genera l l y t o o s low. T h e r e f o r e , optimization 
i s used to speed up the c o m p u t a t i o n o f t he 
l ower b o u n d (or s o l v a b i l i t y t es t ) , f o r examp le 
b y f a c t o r i n g t h e abs t r ac te d p r o b l e m i n t o i n -
d e p e n d e n t s u b p r o b l e m s . We ana lyze the con-
d i t i o n s u n d e r w h i c h t h e r e s u l t i n g heu r i s t i c i s 
faster t h a n b r u t e force search . O u r i m p l e m e n -
t a t i o n , n a m e d A B S O L V E R , has severa l genera l 
t r a n s f o r m a t i o n s fo r a b s t r a c t i n g a n d s i m p l i f y i n g 
s ta te-space p r o b l e m s , i n c l u d i n g a nove l m e t h o d 
for p r o b l e m f a c t o r i n g . A B S O L V E R appears t o 
be the f i r s t m e c h a n i c a l genera to r o f heur i s t i cs 
g u a r a n t e e d t o f i n d o p t i m a l s o l u t i o n p a t h s . W e 
have used i t t o de r i ve k n o w n a n d nove l heur is -
t i cs for va r i ous s ta te space p r o b l e m s , i n c l u d i n g 
R u b i k ' s C u b e . 
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1 I n t r o d u c t i o n 

F i n d i n g o p t i m a l ( least cost) so lu t ions to la rge s ta te -
space p rob lems is genera l ly i n t r a c t a b l e w i t h o u t good 
admiss ib le heur is t ics ( eva lua t i on f u n c t i o n s t h a t r e t u r n 
l o w e r - b o u n d est imates o f d is tance t o goa l ) . W h e n cou-
p led w i t h search a l g o r i t h m s t h a t ensure o p t i m a l i t y , l ike 
A* [N i l sson, 1980] or i t e ra t i ve -deepen ing A* (IDA*) 
[ K o r f , 1985a], such heur is t ics can reorder t h e search so 
t h a t so lu t ions are f o u n d m u c h ear l ier . T h e y can also 
reduce search by p r u n i n g states t h a t l ie mo re t h a n a 
speci f ied d is tance f r o m the goa l . T h i s d i s tance m a y be 
the exact so l u t i o n l e n g t h for p rob lems where i t i s k n o w n 
a priori, an uppe r b o u n d on acceptab le s o l u t i o n l e n g t h , 
o r j u s t i n f i n i t y , i n w h i c h case the p red i ca te tests whe the r 
the goal is reachable at a l l f r o m a g i ven s ta te . 

However , good admiss ib le heur is t i cs can be h a r d to 
f i nd . For examp le , af ter extensive s t u d y , K o r f was u n -
able to f ind a single good heur i s t i c eva lua t i on f u n c t i o n 
for R u b i k ' s C u b e [Kor f , 1985b]. He conc luded t h a t " i f 
there does exist a heur i s t i c , i ts f o r m is p r o b a b l y qu i te 
c o m p l e x . " 

T h e l o n g - t e r m goal o f our research is to deve lop a sys-
t e m t h a t can discover good admiss ib le heur is t i cs au to -
m a t i c a l l y , or a t least w i t h less user e f fo r t t h a n discover-
i n g t h e m b y h a n d . T h e m a i n c o n t r i b u t i o n o f th is paper 
is a m o d e l for d iscover ing such heur i s t i cs , a n d i t s par-
t i a l i m p l e m e n t a t i o n i n a sys tem ca l led A B S O L V E R . We 
nex t descr ibe how i t wo rks , a n d t h e n eva lua te i t as an 
e x p l a n a t o r y m o d e l , as a genera t ive m o d e l , a n d as an au -
t o m a t i c d iscovery engine. 

2 A B S O L V E R 

O u r a p p r o a c h , i l l u s t r a t e d i n F igu re 1 , der ives admiss i -
b le heur is t i cs f r o m abs t rac t ions o f a state-space p r o b l e m . 
A B S O L V E R is i n i t i a l l y g iven a S T R I P S - l i k e representa-
t i o n o f a p r o b l e m class. T h e d i s t i n c t i o n be tween a p r o b -
l e m class a n d a p r o b l e m ins tance is i m p o r t a n t because 
t he ef for t o f d iscover ing a heur is t i c can be a m o r t i z e d over 
a l l ins tances o f t he p r o b l e m class. 

A B S O L V E R generates abs t rac t i ons b y d r o p p i n g in fo r -
m a t i o n f r o m th i s desc r i p t i on v i a a series o f a b s t r a c t i n g 
t r a n s f o r m a t i o n s chosen f rom a ca ta log . An o p t i m a l so-
l u t i o n p a t h fo r any resu l t i ng abs t r ac te d p r o b l e m gives a 
l ower b o u n d o n t r u e d is tance t o goa l . T h i s lower b o u n d 
can t h e n be used as an admiss ib le eva lua t i on f u n c t i o n 
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funct ional ly equivalent to Manhat tan Distance by apply-
ing the drop_predicate t ransformation to the blank pred-
icate in the single-operator representation, or to xloeb 
and yloeb in the Cartesian representation. In either case, 
the abstraction is formed by dropping the boxed pred-
icates f rom the operators and goal. In the abstracted 
problem space, each t i le can move to adjacent squares 
regardless of where the other tiles and blank are. 

2.3 O p t i m i z a t i o n 

An abstracted problem can be sped up by one or more 
of the opt imiz ing transformations listed in Table 2— 
provided it satisfies their preconditions. Unfortunately, 
most abstractions do not; Section 3.3 discusses the dif-
f icult problem of f inding abstractions that can be opt i -
mized. 

In our example, we can use the factor t rans fo rms 
t ion to spli t the abstracted problem into 8 independent 
subproblems, one for each t i le. Next, factor simplifies 
each subproblem by restr ict ing the set of operators to 
those that are relevant to achieving the subgoal. For 
example, the first subproblem has the goal at(a, 1) and 
the restricted operator move(a, 5, S'). For an n by n ver-
sion of the Eight Puzzle, this step reduces the abstracted 
problem f rom a search space containing ( n 2 — l ) n states 
( n 2 possible locations for each ti le) to (n 2 — 1) indepen-
dently solvable problems of size n2, which can be solved 
in to ta l t ime 0(nA). 

If we use the Cartesian representation, we can obtain 
further speedup by applying drop .precondition to xloc 
in the yrnove operator and yloc in the xmove operator, 
and factor ing in to separate subproblems for the x and y 
dimensions. The result ing problem has 2n2 — 2 indepen-
dent subproblems, one for each t i le and each dimension. 
For example, the first subproblem has the goal xloc(a, 1) 
and the restricted operator xmove(a, X, X'). Each sub-
problem has a search space of size n, corresponding to 
the number of columns (or rows). Thus the total t ime 
to evaluate Manhat tan Distance is reduced to 0(n3). In 
comparison, the standard closed-form formula for Man-
hat tan Distance takes t ime O(n2), the number of tiles. 

2 .3 .1 T e s t i n g F a c t o r a b i l i t y 
The factor t ransformat ion part i t ions the goal into mu-

tual ly independent sets of subgoals, and identifies the op-
erators relevant to each set. The independence property 
ensures that the sum of the opt imal solution costs for 
achieving each set is opt imal for achieving their union, 
and is therefore admissible. 

Thus in order for factor to be practical, we need an 
efficient way to check that two sets of goals, g1 and g2, 

2.4 U s i n g H e u r i s t i c s 

Since the cost-effectiveness of heuristics derived by AB-
SOLVER is generally difficult to predict, they must be 
evaluated empirically. ABSOLVER's performance ele-
ment inputs an in i t ia l state, a problem to solve, and 
optionally a heuristic. The problem is represented as 
a list of one or more subproblems, each consisting of a 
subgoal and a set of operators w i th which to achieve i t . 
The IDA* search algori thm is used to solve each sub-
goal, guided by the heuristic (or breadth-first if none is 
given). 

The heuristic is represented as an abstract problem. 
It is evaluated by recursively invoking the same search 
procedure on the abstract problem and returning the 
length of the opt imal solution. Thus the computat ion 
of the heuristic can itself be guided by a hierarchy of 
successively more abstract problems. 

To i l lustrate, consider the " X - Y Heuristic," which is 
derived by factoring an abstracted Cartesian representa-
t ion of the Eight Puzzle into two subproblems, one for 
each dimension. However, instead of dropping the blank 
predicate to achieve factorabil i ty, the drop-precondition 
transformation is used to drop informat ion about the 
X dimension from the subproblem for the Y dimension, 
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and vice versa. In effect, each subproblem projects the 
puzzle onto one dimension. Thus a horizontal move is 
allowed only in to the column containing the blank, and a 
vert ical move is allowed only in to the row containing the 
blank. X - Y is therefore more accurate than Manhat tan 
Distance, which ignores the blank completely. 

A l though X - Y yields a base-level branching factor of 
only 1.19 for the Eight Puzzle (on a set of 18 random 
instances), it requires a considerable amount of search 
to compute. Th is search can be guided by Manhat tan 
Distance. Unfortunately , even w i t h such guidance the 
overall search t ime turns out to be about six times slower 
than using Manhat tan Distance alone. I t remains to 
be seen whether addi t ional opt imizat ions can make X-
Y better than Manhat tan Distance, which is the best 
known heuristic for Eight Puzzle. 

3 Evaluat ing A B S O L V E R 
We now evaluate A B S O L V E R f rom three perspectives: 
first, as an explanatory model that can rat ional ly recon-
struct exist ing heuristics, thereby ver i fy ing admissibi l i ty 
by construct ion; next, as a generative model, helpful for 
suggesting new heuristics; and f inal ly, as an automatic 
discovery engine. 

3.1 A B S O L V E R as an Exp lana to ry M o d e l 

An explanatory model should be evaluated by its gen-
erality and coverage. A general model applies to a wide 
class of domains. W i t h i n that class, a good model covers 
a large propor t ion of the phenomena to be explained. We 
tested ABSOLVER 's generality by apply ing i t to several 
puzzle domains. We tested i ts coverage by t ry ing to red-
erive al l publ ished heuristics for three of them: the Eight 

Pussle, Towers of Hanoi , and Mut i la ted Checkerboard. 
The results are summarized in Table 3. 

Th is evaluation simultaneously tested the model at 
three different levels of specificity. Fi rst , it tested the 
generality and coverage of the part icular catalog of trans-
formations across several domains. Since we knew our 
in i t ia l catalog was incomplete, we were also interested 
in ident i fy ing useful new transformations. In fact, these 
problems served as our " t ra in ing data" for developing 
the catalog in Table 1, so they should not be taken as a 
test of its coverage, though they do demonstrate the gen-
eral i ty of the transformations used in mul t ip le domains. 
Second, it tested the problem representation language, 
since some heuristics might not be derivable in that rep-
resentation. Final ly, i t tested the general model of ab-
stract ion plus opt imizat ion , which might fai l to explain 
some heuristics. 

Wha t does it mean to rederive a heuristic? Clearly, it 
is not necessary to rederive specific code. On the other 
hand, funct ional equivalence alone is insufficient, since 
an abstraction-based heuristic computed using search 
may be much less efficient than the original version. We 
therefore compared their computat ional complexity. 

The results can be summarized as follows. We were 
able to rederive funct ional equivalents w i t h ABSOLVER 
for 6 of the 10 published heuristics, though w i th varying 
efficiency relative to the or iginal versions. 

The derived versions of # of Misplaced Tiles, # of 
Misplaced Disks, and Colored Squares were al l compu-
tat ional ly equivalent to the originals. 

Three of the derived heuristics were less efficient than 
the original versions, owing to l imi tat ions in the chosen 
problem representations and deficiencies in the catalog 
of opt imiz ing transformations. The derived Manhat tan 
Distance was slower by 0(n) (for n by n puzzles) because 
it uses search to compute the number of moves needed 
to get f rom row % to row i''. We have derived the closed 
form expression \i — i'| on paper, bu t only by exploit ing 
the numerical relationships impl ic i t in the adj relation to 
induce a recurrence relat ion. Implement ing this deriva-
t ion in A B S O L V E R would require a more sophisticated 
representation and an opt imiz ing transformation capa-
ble of inducing the recurrence relat ion. Similarly, the 
derived versions of n-MaxSwap and n-Swap are slower 
by 0(n2!) because they search for an ordered permuta-
t ion instead of count ing the number of swaps performed 
by an efficient sort ing a lgor i thm. A challenging direc-
t ion for future work is automat ical ly recognizing when an 
abstracted problem can be solved by adapt ing a known 
algor i thm. 

T w o of the heuristics have the wrong form: Sequence 
Score is non-admissible, and A l te rnat ing Disks is a 
heuristic on moves, not states. 

Euclidean Distance breaks our model in an interesting 
way, because it comes f rom adding knowledge about ge-
ometry. Our current model only generates abstractions 
by dropping in format ion from the problem defini t ion. 

The Blocking Disks heuristic is defined only for states 
in which two of the pegs are empty. It was originally 
derived by analyzing a recursive a lgor i thm for Towers of 
Hanoi to compute the exact number of moves required. 
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We see no way to derive this formula by abstracting 
the problem representation. However, extending A B -
SOLVER to f ind special-case heuristics might be wor th-
while. 

3.2 A B S O L V E R as a G e n e r a t i v e M o d e l 

How good is our model at suggesting new heuristics? 
Table 4 attempts to answer this question for several do-
mains. For each of these domains only "good" heuristics 
are l isted; several other heuristics were derived but ap-
peared worse in terms of overall search t ime. 

We were able to discover the first known (non-tr ivial) 
admissible heuristic for the 3x3x3 Rubik's Cube. For 
this problem, we started w i th a represention that par-
t i t ions the Cubies in to center, edge, and corner ones. 
Dropping the edge predicate allows the operators to be 
factored into those that affect corner Cubies and those 
that affect center Cubies. 

How good is this Center-Corner heuristic? For 13 
problems randomly scrambled to depth 6 or less, it 
reduces the branching factor from 9 (for breadth-first 
search) to 5.9. The heuristic is computed by solving 
the two subproblems. The subproblem for the six cen-
ter Cubies has three operators and is cheap to solve. 
The subproblem for the eight corner Cubies is equivalent 
to a 2x2x2 version of Rubik's Cube. Since our Prolog 
implementat ion of IDA* only expands about 10 states 
per second, we have not yet evaluated the Center-Corner 
heuristic on deep random solvable instances of the Cube. 

We were also able to derive some new admissible 
heuristics for the Eight Puzzle. We have already de-
scribed the X - Y heuristic, which is more accurate than 
Manhat tan Distance. Similarly, # Out of Column + # 

ing each pentomino once—or to prove that it cannot be 
done. When we attacked this problem, we believed it 
was st i l l open. After proving it impossible, we found a 
published proof that relies on remarkably similar tech-
niques [Golomb, 1965]. 

We started wi th a problem representation that par t i -
tions the squares into those in the inter ior of the Jagged 
Square, those bordering the outer edges, and those bor-
dering the inner "hole." (We later added "corners"). 
Next, we applied the count t ransformation to each par-
t i t ion . Unfortunately, i t turned out that the resulting 
admissible heuristic was not strong enough to prove the 
problem impossible, i.e., the abstracted in i t ia l state ap-
peared solvable. We then hand-generated every possible 
placement of the four most constraining pentominoes; 
taking symmetry into account, there were only a dozen 
or so. Finally, we executed exhaustive search in the ab-
stract space on each of these part ia l layouts to show the 
impossibil i ty of completing any of them. 

Table 4 also lists novel heuristics derived for some GPS 
domains [Ernst and Goldstein, 1982]: Fool's Disk, In-
stant Insanity, and Th ink-A-Dot . 

One lesson of these examples is the frequent impor-
tance of clever part i t ioning in the in i t ia l problem rep-
resentation: the border and interior squares in Jagged 
Square; the corner, center, and edge Cubies in Ru-
bik's Cube; and the red and black squares in Mut i la ted 
Checkerboard. At present such part i t ioning is supplied 
as part of the in i t ia l representation. 

3.3 A B S O L V E R a s a n A u t o m a t i c D i s c o v e r y 
E n g i n e 

As an automatic discovery engine, ABSOLVE R must be 
evaluated by the tractability of f inding good heuristics 
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in the space defined by the catalog of transformations. 
There is a tradeoff between t ractab i l i ty and coverage, 
since enlarging the catalog expands the space of derivable 
heuristics but makes it costlier to explore. 

The fu l l space defined by ABSOLVER 's current cata-
log of transformations is far too huge to explore exhaus-
tively. For example, the drop transformations alone can 
be applied to any combinat ion of subgoals and operator 
preconditions. For our nine-operator representation of 
the 3x3x3 Rubik 's Cube, there are 126 subgoals and 312 
preconditions: the number of combinations is astronom-
ical. 

As a compromise between coverage and t ractabi l -
i ty, we implemented an exhaustive generator using the 
coarser-grained drop-predicate as the only abstract ing 
t ransformat ion and factor as the only opt imiz ing trans-
format ion. For the Eight Puzzle, i t took this generator 
a few C P U seconds to test al l combinations of dropped 
predicates. For the three-predicate, single-operator rep-
resentation, the only combinations w i t h more than one 
factor yielded Manhat tan Distance and # Out of Place 
Tiles (subject to the efficiency l imi tat ions discussed in 
Section 3.1). The five-predicate, two-operator Carte-
sian representation yielded more heuristics: Horizontal 
Distance, Vert ica l Distance, Manhat tan Distance (their 
sum), analogs of al l three for Distance of Blank, # Out 
of Column + # Ou t of Row, and Blank Out of Column 
+ Blank Out of Row. For our three-predicate, nine-
operator representation of Rubik 's Cube, the generator 
took over five hours, since our independence test for 
factorabi l i ty current ly takes t ime quadratic in the size 
of the largest t ransi t ive closure formed by the symbolic 
backchaining step described in Section 2.3.1. Somewhat 
surprisingly, there is only one factorable combinat ion— 
the Center-Corner heuristic. 

To escape f rom the coverage-tractabil i ty tradeoff, we 
must use a better strategy than exhaustive generate-and-
test to find efficiently computable abstractions. We arc 
investigating the use of means-ends analysis to ident i fy 
which abstract ing transformations w i l l enable opt imiza-
tions. In part icular, i f we can efficiently identi fy which 
applications of dropsubgoal and drop_precondition w i l l 
make it possible to apply factor, we wi l l be able to find 
the factorable abstractions w i thou t generating and test-
ing al l combinations of dropped goals and precondit ions. 

4 R e l a t i o n to P rev i ou s W o r k 

Figure 3 relates several previously reported proper-
ties that can hold between abstractions and heuristics 
[Nilsson, 1980, Pearl, 1984]. 

The relat ion of certain abstractions to state-space 
search heuristics was first suggested by Guida and So-
malvico [Guida and Somalvico, 1979] and Gaschnig 
[Gaschnig, 1979], who described how such heuristics 
might arise by using the depth of solutions in edge 
supergraphs of the original state-space search graph 
as lower-bounding heuristics. Such edge supergraphs 
natural ly arise f rom dropping operator preconditions. 
Later, Va l to r ta [Val tor ta, 1984], Pearl IPearl, 1984], 
and Kib ler [Kibler, 1985] each proved that abstractions 
such as those result ing f rom dropped operator precondi-

tions would guarantee monotone (and hence admissible) 
heuristics. Our abstract ing transformations extend the 
edge supergraph model of abstract ion to include node-
merging. 

Va l to r ta proved that using a dropped-precondit ion ab-
stract ion direct ly as a heuristic w i l l always expand more 
to ta l states in the two spaces than simply using breadth-
first search in the base space [Val tor ta, 1984]. Pearl later 
pointed out that this l iab i l i t y might be overcome by fac-
tor ing the abstracted problem in to independent or serial-
izable subproblems, which might be possible even when 
the original problem is not factorable [Pearl, 1984]. Fac-
tor ing reduces the to ta l search complexi ty f rom the prod-
uct of exponentials to their sum. Though elegant, these 
methods were not implemented: the abstracting and op-
t imiz ing transformations were performed by hand. 

Some work has been done on automatic generation 
of abstractions in planning [Sacerdoti, 1974, Knoblock, 
1988, Unruh et a/., 1987], but not for the class of admissi-
ble heuristics addressed here. For example, ABSTRIPS 
used abstract solutions as skeletons for base solutions, 
which tends to reduce planning t ime but can produce 
sub-opt imal plans. Furthermore, ABSTRIPS discards 
abstract solutions that cannot be refined into more con-
crete ones. In contrast, A B S O L V E R uses abstractions 
solely to compute lower bounds and check solvability, 
thereby not discarding potent ia l ly valuable informat ion 
f rom non-refinable abstract solutions. Other systems 
have been reported for serializing GPS subgoals [Ernst 
and Goldstein, 1982], but they do not guarantee the op-
t i m a l l y of the solut ion paths. 

In sum, while a few techniques have previously been 
reported for abstract ing and s impl i fy ing state-space 
problems, A B S O L V E R constitutes a novel at tempt to 
automate, integrate, extend, and evaluate these tech-
niques. 

5 Conc lus ion 

A B S O L V E R appears to be the first mechanical genera-
tor of state-space heuristics guaranteed to f ind opt imal 
solut ion paths. It achieves this admissibi l i ty property by 
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decomposing the problem of discovering heuristics in to 
generating abstractions and opt imizing their evaluation. 

A B S O L V E R can be viewed at more than one level. 
First , i ts t ransformational model provides a unifying 
framework for characterizing and exploring a broad class 
of admissible heuristics and understanding when they 
are actual ly useful. Second, we have grounded the model 
by implement ing a catalog of abstracting and opt imizing 
transformations and using them to derive a number of 
heuristics. T h i r d , we have demonstrated an automatic 
generator that uses two of these transformations to find 
efficiently computable heuristics. 

As an explanatory model, ABSOLVER's coverage is 
encouraging in one sense but deficient in another. Whi le 
its small catalog of abstract ing transformations is ade-
quate to derive funct ional equivalents for many of the 
published heuristics we looked at in several puzzle do-
mains, i ts opt imiz ing transformations are too weak to 
compute some of them as efficiently as the originals. We 
do not c laim the catalog is complete, and in fact expect 
it to grow as we t r y to improve evaluation cost, derive 
more heuristics, and explore other domains. The few 
heuristics that d id not match ABSOLVER's underlying 
model suggest interesting directions in which to extend 
it. 

As a generative model, A B S O L V E R has yielded some 
novel heuristics, notably the first non-tr iv ia l admissible 
heuristic for Rubik's Cube, and an interesting Eight Puz-
zle heuristic that is more accurate than the best known, 
though somewhat less cost-effective. A l though all the 
transformations reported here are ful ly implemented, the 
techniques used in A B S O L V E R are useful for generating 
heuristics even when applied by hand. In fact, that is 
how we actual ly discovered most of the novel heuristics, 
and how we proved the impossibi l i ty of a published lay-
out problem we thought was st i l l open. Subsequent im-
plementation of the derivations served to verify their cor-
rectness and to expose the use of addit ional techniques. 
Thus the implementat ion is actually of secondary impor-
tance for discovering new heuristics, except to the extent 
that it makes the techniques easier to apply. 

As an automat ic discovery engine, ABSOLVER is l im-
i ted by the in t ractab i l i t y of exploring the space generated 
by i ts fu l l catalog of transformations. I ts exhaustive gen-
erator uses only one abstract ing transformation and one 
opt imiz ing t ransformat ion, thereby achieving tractabi l -
i ty at the cost of coverage. Nonetheless, it f inds inter-
esting heuristics in more than one domain. 

Of the many possible directions for extending A B -
SOLVER, two seem especially compell ing. First, means-
ends analysis may make it possible to explore a richer 
space of possible heuristics automatical ly. Second, A B -
SOLVER's sensit ivi ty to the in i t ia l problem representa-
t ion, and the importance of clever par t i t ion ing in discov-
ering novel heuristics, suggest that a few transformations 
for representation-shift ing might significantly enrich the 
space of discoverable heuristics. 
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