6.034 Recitation 4: Game Search Exercises Solutions (October 2)
Robert C. Berwick

1. Consider the game tree shown below. Explore the tree using the alpha-beta procedure. Indicate all parts of
the tree that are cut off, and indicate the winning path or paths. Strike out all static evaluation values that do not

need to be computed. . 20 - A= [ower bound of max
6: u,PW bDw’\d ol mun,
. Stop When of =
e ¢
@ = (o

8 4 6

2 2 0 < 6
0 OOO O® O O |
ofthe tree showil above. Explore the tree using

2. Now consider the tree shown below. which is a mirror image
the alpha-beta procedure. Indicate all parts of the tree that are cut off. Indicate the winning path or paths. Strike

out all static evaluation values that do not need to be computed. lo
p 4
z

8 - 8 6 Rl 0 2 2
OB ® X®W® XX
3. Compare the amount of cutoff in the above two trees. What do you notice about how the order of static
evaluation nodes affects the amount of alpha-beta cutoff?



[d

v 0 1 12 13 1
6 6 4 0 2 2

Maximizer at node 0 alpha -1000 beta 1000
Minimizer at node 1 alpha -1000 beta 1000
Maximizer at node 3 alpha -1000 beta 1000
returning 6 from terminal node 7
returning 4 from terminal node 8
returning 6 from node 3
Maximizer at node 4 alpha -1000 beta 6
returning 8 from terminal node 9
Cutoff at node 4 alpha 8 beta 6
returning 8 from node 4
returning 6 from node 1
Minimizer at node 2 alpha 6 beta 1000
Maximizer at node 5 alpha 6 beta 1000
returning 4 from terminal node 11
returning 0 from terminal node 12
returning 4 from node 5
Cutoff at node 2 alpha 6 beta 4
returning 4 from node 2
returning 6 from node 0
Answer = 6,
Evaluations = 5,
Evaluated Nodes (7 8 9 11 12)
Cutoffs = 4, 2

Minimizer ————————— ()56

Max

Min

Max

6 4 8 6 4 0 2 2 7 4 9 3 3 3 2 &6



4
y 8 10
2 2 4

Maximizer at node 0 alpha -1000 beta 1000
Minimizer at node 1 alpha -1000 beta 1000
Maximizer at node 3 alpha -1000 beta 1000
returning 2 from terminal node 7
returning 2 from terminal node 8
returning 2 from node 3
Maximizer at node 4 alpha -1000 beta 2
returning 0 from terminal node 9
returning 4 from terminal node 10
Cutoff at node 4 alpha 4 beta 2
returning 4 from node 4
returning 2 from node 1
Minimizer at node 2 alpha 2 beta 1000
Maximizer at node 5 alpha 2 beta 1000
returning 6 from terminal node 11
returning 8 from terminal node 12
returning 8 from node 5
Maximizer at node 6 alpha 2 beta 8
returning 4 from terminal node 13
returning 6 from terminal node 14
returning 6 from node 6
returning 6 from node 2
returning 6 from node 0
Answer = 6,
Evaluations = 8,
Evaluated Nodes (7 8 9 10 11 12 13 14)
Cutoffs = 4



3. Compare the amount of cutoff in the above two trees. What do you notice about how the order of static
evaluation nodes affects the amount of alpha-beta cutoff?

If the evaluated nodes are ordered in the manner described below, then you get maximal alpha-beta cutoff; the
opposite order gets no alpha-beta cutoff. For the game trees we've been looking at (i.e. with the bottom row
containing the evaluated nodes, and successively higher layers of nodes alternating between minimizer and
maximizer, or maximizer and minimizer):

If penultimate level of tree is a maximizer level, you get maximal cutoff if descendents of each node in that level
are ordered from left to right, max value to min value.

If penultimate level of tree is a minimizer level, you get maximal cutoff if descendents of each node in that level
are ordered from left to right, min value to max value.

Note that since the goal of alpha-beta pruning is to cut down on the number of nodes that have to be evaluated,
game programs don’t actually sort nodes. Two observations that can be made: (1) the performance of alpha-beta

is variable and can’t be counted on to always outperform minimax; (2) a move generator could attempt to
produce new configurations in a sorted order.

4. Bigger Game Trees

Minimizer > /05\6

\\
>6 =7 Max
s
<6 <4 <7 Min
>6 >8 >4 =T > Max

6 4 8 6 4 0 2 2 7 4 9 3 3 3 2 6

Minimizer > OF7 =0
// ™
> 7 e h N > 6
odl ™~
?/6/, Y 8 4 Max



5. Tic-Tac-Toe

You are the X player, looking at the board shown below, with five possible moves. You want to look ahead to
find your best move and decide to use the following evaluation function for rating board configurations:
value V=0
do over all rows, columns, diagonals R:
if R contains three Xs, V=V + 1000
else if R contains three Os, V =V -1000
else when R contains only two Xs, V=V + 100
else when R contains only one X, V=V + 10
else when R contains only two Os, V=V — 100
else when R contains only one O, V=V — 10
end do
return V

Draw the four configurations possible from the leftmost and rightmost board configurations below. Use the
above static evaluation function to rate the 8 board configurations and choose X’s best move. (A reminder: The
board configurations that you draw will show possibilities for O’s next move.)

o e = ~ —— >

« e A
i‘i\ \ X \ i é\ i
A % i) E%J A
/ / / / \
/ \ / \ / \ / \

¥ gy ¥ v« ¥ « ¥ : '

vy \AJ

VV‘ ‘VV‘

| X’s best move is the one that forces

- S . o, . .
206 52?}5\-/ O to achieve a position with a score
‘*‘_*"" ™ of —180, rather than a score of —910.

b | J
DO X L O @
- R — N I A -
o g oS O

-190 -100 10

6. The game tree would be on the order of 81! (roughtly 10'*” AND it’s 81 ply deep!





