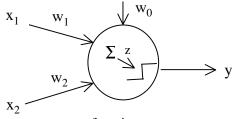
## **6.034 Recitation October 30: Neural Nets** Bob Berwick



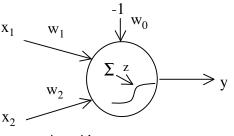
*Neural nets* are networks of simulated neurons, each of which has weighted inputs, an adder that sums the weighted inputs, a threshold function that checks the sum against a threshold and returns an output. By means of *forward propagation*, inputs are run through the network to produce outputs: At each level of the network, weighted inputs are summed, then run through either a step function or a sigmoid to produce an output. As with other machine learning techniques, the goal in using a neural net is to classify unknown inputs, i.e., assign a known class to an unknown input. (Output that is continuous rather than discrete implements regression rather than classification.)

A simulated neuron that employs a *step function* returns 1 or 0, depending on whether the input is above or below a specified threshold value, respectively. Neural nets of these simulated neurons, sometimes called perceptrons, can be thought of as linearly dividing a space of input vectors into regions, thereby creating decision boundaries. The weights in multi-layer perceptron nets cannot be automatically computed, i.e., learned, because of the discontinuity of the threshold function.

The more usual kind of neuron in a neural net employs a *sigmoid function*. Such sigmoid neural nets are extremely difficult to design by hand; weights are learned via a *backpropagation* algorithm. Two modifications to the step function idea enabled this automatic computation (and "nice" math): (1) representing a non-zero threshold as a weight with a -1 input value, so that the threshold becomes zero and can be computed automatically just as any other weight; (2) replacing the step function with a continuous (sigmoid) function, thus enabling gradient ascent (or descent) methods to be used in computing weights.

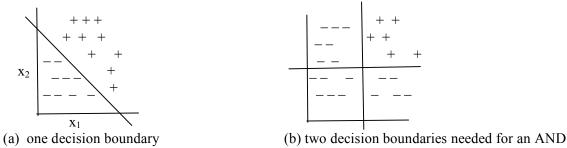


step function neuron



sigmoid neuron

## **Step function neurons: linear decision boundaries**



We can think of a step function net as defining a linear decision boundary, ax + by - c = 0. The sum of the weights of a step function neuron can represent the equation of the line:  $w_1x_1 + w_2x_2 - w_0 = 0$ . In example (a) above, to the left of the line can be represented by a 0 output; to the right a 1 output. Each decision line is represented by one neuron in the lowest layer of the net. Each class is represented by a neuron in the final layer,

with two classes only requiring one neuron. Interior neurons implement Boolean combinations, which allow for classifying data sets such as that shown in (b) above.

## **Backpropagation Notes**

New weights depend on a learning rate and the derivative of a performance function with respect to weights:

(1) 
$$w_i' = w_i + r \frac{\partial P}{\partial w_i}$$

Using the chain rule, where  $y_i$  designates a neuron's output:

(2) 
$$\frac{\partial P}{\partial w_i} = \frac{\partial P}{\partial y_i} \frac{\partial y_i}{\partial w_i}$$



For the standard performance function, where  $y^*$  is the final desired output and y is the actual final output,  $P = -\frac{1}{2}\sum_{x}(y^*-y)^2$ :

(3) 
$$\frac{\partial P}{\partial y_i} = \frac{\partial}{\partial y_i} (-\frac{1}{2} (y^* - y)^2) = (y^* - y)$$

For a neural net, the total input to a neuron is  $z = \sum w_i x_i$ 

(Note that  $x_i$  is sometimes written  $y_i$  to indicate that in a multilayer network, the input for one node is the output for a previous layer node)

For a sigmoid neural net, the output of a neuron, where z is the total input, is  $y = s(z) = \frac{1}{1 + e^{-z}}$ .

Recall that the derivative 
$$\frac{\partial y}{\partial z} = y(1-y)$$

So for the <u>output</u> layer of a sigmoid neural net:

(4) 
$$\frac{\partial y_i}{\partial w_i} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial w_i} = y(1-y)x_i$$

Substituting (3) and (4) into (2):

(5) 
$$\frac{\partial P}{\partial w_i} = \frac{\partial P}{\partial y_i} \frac{\partial y_i}{\partial w_i} = (y^* - y)y(1 - y)x_i$$

Substituting (5) into the weight equation (1):  $w_i = w_i + r(y * - y)y(1 - y)x_i$ 

... which can be written in terms of  $\delta$ , which is the derivative of P with respect to total input,  $\frac{\partial P}{\partial \tau}$ :

$$w_i' = w_i + r\delta_i x_i$$
, where  $\delta_i = \frac{\partial P}{\partial y} \frac{\partial y}{\partial z} = (y^* - y)y(1 - y) = y(1 - y)(y^* - y)$   $x_i \xrightarrow{w_i} \delta_i \longrightarrow y_i$ 

(Note that to change P, one only needs to substitute the new  $\frac{\partial P}{\partial y}$  into this equation.)

For an <u>inner</u> node, we use a similar equation that takes into account the output  $y_i$  for that node, and the  $\delta$  and w values for the <u>next</u> layer, where "next layer" means the neighboring nodes one layer <u>closer</u> to the output layer:

$$w_i' = w_i + r \delta_i x_i$$
, where  $\delta_i = y_i (1 - y_i) \sum \delta_j w_{ij}$   
and  $w_{ij}$  is the weight between layers *i* and *j*.  
 $w_i = x_i$   
 $y_h = x_i$   
 $\dots$ 

Summary: For each layer,  $w_i' = w_i + r \delta_i x_i$ , where for <u>outer</u> layer  $\delta_i = y(1-y)(y^*-y)$ <u>inner</u> layer  $\delta_i = y_i(1-y_i) \sum \delta_j w_{ij}$