Massachusetts Institute of Technology

6.034: Artificial Intelligence Fall 2006

Instructor: Robert C. Berwick

Recitation 6: Constraint Satisfaction Problems (CSP), Notes ¹ October 19, 2006

1. Backtracking Search

The pseudocode for backtracking search (BT) follows. Note that backtracking search is simply depth-first search with backtracking on the search tree of partial assignments as its nodes. The input is a (partial) assignment A and a list of unassigned variables U. The output is either failure or a (complete) assignment. We denote the domain of variable X as D(X). The algorithm is initially called with A the empty assignment and U the list of all the variables of the CSP.

```
BT(A, U)
if A is complete then
  return A
end if
Remove a variable X from U
for all values x \in D(X) do
  if X = x is consistent with A according to the constraints then
    Add X = x to A
    result \leftarrow BT(A, U)
    if result \neq failure then
      return result
    end if
    Remove X = x from A
  end if
end for
return failure
```

2. Backtracking Search with Forward Checking

The pseudocode for backtracking search with forward checking (BT+FC) follows. The algorithm uses an extra input D that corresponds to the current domains of the variables. Initially, D corresponds to the set of original domains.

¹These notes are primarily based on the recitation notes of Luis Ortiz, Kimberle Koile and the slides of Tomás Lozano-Perez from previous terms, as well as the book by Russell and Norvig [2003].

```
BT+FC(A, U, D)
if A is complete then
  return A
end if
Remove a variable X from U
for all values x \in D(X) do
  if X = x is consistent with A according to the constraints then
    Add X = x to A
    D' \leftarrow D (Save the current domains)
    for all Y \in U (i.e., Y an unassigned variable), Y - - X (i.e., Y a neighbor of X in
    the constrained graph) do
       Remove values for Y from D'(Y) that are inconsistent with A
    end for
    if for all Y \in U, Y - - - X, we have D'(Y) not empty then
       result \leftarrow BT+FC(A, U, D')
      if result \neq failure then
         return \ result
       end if
    end if
    Remove X = x from A
  end if
end for
return failure
```

3. Constraint Propagation

The pseudocode for the arc consistency algorithm (AC), the most basic form of constraint propagation, follows. ² The basic idea of the algorithm is to just check that all the arcs in the constraint graph are consistent. If not, it eliminates values from the domain of the variable that make the arc inconsistent, and insert to the queue arcs that are affected by that change in domain values. We denote that there is an arc from variable X to variable Y in the constraint graph by $X \to Y$.

²In the CSP literature, this particular version is actually named AC-3, because this was the third version given by its inventor in Mackworth [1977].

```
AC
Add all arcs in the constraint graph to Q
while Q is not empty do
  Remove first arc X \to Y from Q
  if Remove-Inconsistent-Values(X, Y) then
    for all variables Z \neq Y such that Z \to X do
      Add Z \to X to Q (if not there already)
  end if
end while
Remove-Inconsistent-Values(X, Y)
for all values x \in D(X) do
  if there does not exist a value y \in D(Y) such that X = x, Y = y is consistent with the
  constraint between X and Y then
    Delete x from D(X)
  end if
end for
if deleted values then
  return yes
else
  return no
end if
```

(a) (Optional) **Time Complexity**

The running time of the algorithm is $O(ed^3)$ where e is the number of constraints and d is the number of values for each variable (i.e., the size of the domain). The running time analysis is as follows. Every arc is inserted into the queue Q at most d times, since d is the number of values for each variable and the algorithm eliminates at least one value from the domain of some variable at each round (otherwise, if no value is removed for the arcs in the queue Q, then Q becomes empty and the algorithm stops). Therefore, the maximum number of iterations before Q becomes empty is O(ed). Checking that an arc is consistent at each iteration takes $O(d^2)$. Therefore, the total running time $O((ed)(d^2))$.

You should contrast this worst-case running time, which is linear in n, to that of back-tracking search which is $O(d^n)$, which is exponential in n. Hence, we can apply constraint propagation to try to reduce the size of the domains before we do backtracking since it does not take that long to run. Alternatively, you can run constraint propagation at every partial assignment node of the search tree. Usually in this case, however, constraint propagation is run only when there is only one value left for the variable just extended.

4. (Optional) Alternative Search Formulation and Algorithms for CSPs

An alternative search formulation to solve CSPs is by first constructing a *state-space graph*. The nodes in the graph correspond to complete assignments. There is an edge between two nodes if their respective assignments differ by the value assignment of only one variable. This graph looks just like the graph for map problems we saw for basic and optimal search. The goal nodes correspond to solutions for the CSP. We start from some arbitrary node (i.e., some

complete assignment) and try to reach a goal node in the graph in a minimum number of steps.

References

Alan K. Mackworth. Consistency in networks of relations. $Artificial\ Intelligence,\ 8(1):99-118,\ February\ 1977.$

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson Education, second edition, 2003.