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Part I.  SVMs: solving for support vectors using the kernel function directly 
Question 1. Instead of using the ‘eyeball’ technique, we can use the constraints of the SVM 
optimization problem to solve for the support vector ‘alpha’ values directly, and so find the 
decision boundary line. This is useful when we have no geometric picture, especially when we 
move to non-linear kernel functions.  But first, let’s do this for a simple case, to gain practice. 
Let us consider solving for the following SVM classifier: 

 
h(x) = sgn α i yiK (

xi ,
x)+ b

i∑( )  

where we will use first a linear kernel function  K (
u, v) = u ⋅ v , i.e., the normal dot product, on 

the following data set with just 3 training data points, A, B, and C: 
 
data point A: (–1, 1); classifier output: +1 
data point B: (0, 0); classifier output: –1 
data point C: (1, 0); classifier output: +1 
 
Part A. Instead of doing this geometrically, we now explicitly compute the kernel function 
values for each of the 3 points, pairwise against one another (these are just dot product 
computations!) 

 

i       j        K (xi ,
x j )

A     A       (−1,+1) ⋅ (−1,+1) = 2
A     B       (−1,+1) ⋅ (0,0) =    0
A     C        (−1,+1) ⋅ (1,0) =  −1
B     B       (0,0) ⋅ (0,0) =        0
B     C        (0,0) ⋅ (+1,0) =      0
C      C        (+1,0) ⋅ (+1,0) =   +1

 

 
Part B. Now we can find the system of linear equations governing the support vector alphas, 
αA, αB, and αC that can be derived given the two key constraints given by the Lagrangian 
formulation of the SVM optimization problem: 
Constraint 1. α ii∑ yi = 0  
Which for the 3 points with support (ie, that are support vectors), A, B, C, we therefore have 
the equation: 

αA (1)+αB (−1)+αC (1) = 0  
Constraint 2. For all points with support, we have: 

 
y = α ii∑ yiK (

xi ,
x)+ b  

For points A, B, C, we therefore have the summation over 3 terms implies 3 equations as 
follows (where we have switched the terms of  

xi  and  
x  from the equation above, don’t be 

deceived – the inner products are commutative): 
+1=αAK (xA , xA )−αBK (xA , xB )+αCK (xA , xC )+ b
−1=αAK (xB , xA )−αBK (xB , xB )+αCK (xB , xC )+ b
+1=αAK (xC , xA )−αBK (xC , xB )+αCK (xC , xC )+ b

 

 
Part C. But we can now simplify these 3 equations, by plugging in the actual values for K as 
computed above, to get these 3 equations: 
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+1= 2αA −αC + b
−1= b
+1= −αA +αC + b

 

Thus we immediately can solve for b=–1.  Now we can solve for αA by adding the first and 
third equations together, getting:  

+2 =αA + 2(−1)
+4 =αA

 

Using this value for αA, we can now find the value for αC: 
+1= −4 +αC −1
6 =αC

 

Finally, using Constraint 1, we can solve for αB, since the sum from Constraint 1 must be 0. 
So αA + αC =αB, therefore, αB= 4 + 6 = 10, and we have: αA=4; αB=10; αC =6; b=–1.  
 
Part D. Now, what is the SVM classifier equation for h given this answer?  This follows 
directly from the boundary line definition in the SVM Winston notes: 

h(x1, x2 ) = sgn(αAK (xA , x)+αBK (xB , x)+αCK (xC , x)+ b)
= sgn(4(−1,+1) ⋅ (x1, x2 )+10(0,0) ⋅ (x1, x2 )+ 6(+1,0) ⋅ (x1, x2 )−1)
= sgn(4(−1,+1) ⋅ (x1, x2 )+ 6(+1,0) ⋅ (x1, x2 )−1)
= sgn(2x1 + 4x2 −1)

 

Note: the middle term with αB has dropped out here because K(xB,x) is always 0 no matter 
what x is.  This equation defines the boundary line midway between the gutters as well, all 
without having to draw anything: 

2x1 + 4x2 −1> 0

x2 = −
1
2
x1 +

1
4

 

 
Part E. Let us see what happens when we add new training data points.  
If we added a new point xD at (2,0), with output yD= +1, nothing would change, because this 
point would not have any support vector weight, and it would be correctly classified with what 
we have so far. 
If instead yD= –1, then everything would change, because this would force us to redefine 
where the decision boundary line goes.  
 
Question 2.  Non-linear kernels. 
Now let’s repeat this game with the same three data points, but with a non-linear kernel 
function, the quadratic form: 

 K (
u, v) = (1+ u ⋅ v)2  

Part A. Recall that this kernel will give parabolic shaped contour lines.  So, first, we just have 
to go through the kernel computation as we did with the linear kernel, but now of course we 
are computing a different ‘similarity’ function, using the new kernel function.  Note that we 
can make use of our old values of u·v from our previous table to speed up the computation, 
i.e., for point A, dot product of A with itself is just 2, from our table above: 

 

i       j        K (xi ,
x j ) = (1+ u ⋅ v)2

A     A       (1+2)2 = 9
A     B       (1+ 0)2 = 1
A     C        (1+ –1)2 = 0
B     B       (1+0)2 = 1
B     C        (1+0)2 = 1
C      C        (1+ 1)2 = 4
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Part B. As before, we can now set up a system of equations from the Lagrangian constraint 
solution.  
Constraint 1. α ii∑ yi = 0  
 
Constraint 2. For all points with support, we have: 

 
y = α ii∑ yiK (

xi ,
x)+ b  

Just as before, these constraints work out to imply: 
+1=αAK (xA , xA )−αBK (xA , xB )+αCK (xA , xC )+ b
−1=αAK (xB , xA )−αBK (xB , xB )+αCK (xB , xC )+ b
+1=αAK (xC , xA )−αBK (xC , xB )+αCK (xC , xC )+ b

 

 
Part C. But this time the kernel values are different!  We plug in the K values from the 
quadratic ‘inner product’ as defined above.  When we do this, and solve for the three alpha 
values (I shall leave this algebra to you this time), we get: 

αA =
8
23
;αB =

3
23
;αC =

18
23
;b = −

49
23

 

 
Part D.  Now we can define the classifier function as we did before, with these new values for 
the alphas: 

 

h(x = (x1, x2 )) = sgn(αAK (xA , x)+αBK (xB , x)+αCK (xC , x)+ b)

= sgn( 8
23
(1+ xA ⋅ x)

2 +
3
23
(1+ xB ⋅ x)

2 +
18
23
(1+ xC ⋅ x)

2 −
49
23
)

= sgn( 8
23
(1+ −1

+1
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ x)2 +

3
23
(1+ 0

0
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ x)2 +

18
23
(1+ +1

0
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ x)2 −

49
23
)

= sgn 8
23
(1− x1 + x2 )

2 + 0 + 18
23
(1+ ⋅x1)

2 −
49
23

⎛
⎝⎜

⎞
⎠⎟

 

 
3. Other spaces, other kernels 
OK, now the other big win with SVMs has to do with the ease with which you can transform 
from one space to another, where the data may be more easily separable.  The remaining 
questions all ask you about that, for different kinds of kernels (= different ways to compute 
inner products, or ‘distance’, aka, ‘similarity’ of two points).  That is, we need to define K(u,v) 
= φ(u)·φ(v), the dot product in the transformed space. (You should try these out in Winston’s 
demo program to see how the decision boundaries change.) 
The basic kernels we consider are these: 
 
1. Single linear kernel.  These are just straight lines in the plane (or in higher 
dimensions).  You should remember what perceptrons can and cannot ‘separate’ via 
cuts, and this tells you what linear kernels can do. (But see below under linear 
combination of kernels!!!) 

 K (u, v) = (u ⋅ v)+ b,  e.g., K (u, v) = (u ⋅ v)  (ordinary dot product)  
 
2. Polynomial kernel. 

 

K (u, v) = (u ⋅ v + b)n ,  n >1
eg.,  Quadratic kernel: K (u, v) = (u ⋅ v + b)2

 

In 2-D the resulting decision boundary can look parabolic, linear, or hyperbolic depending on 
which terms in the expansion dominate.  
 
3. Radial basis function (RBF) or Gaussian kernel. 
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K (u, v) = − exp −

u − v 2

2σ 2

⎛

⎝
⎜

⎞

⎠
⎟  

In 2-D, the decision boundaries for RBFs resemble contour circles around clusters of positive 
and negative points  Support vectors are generally positive or negative points that are closest 
to the opposing cluster.  The contour space that results is drawn from the sum of support 
vector Gaussians.   Try the demo to see. 
When the variance or spread of the Gaussian curve σ2  (‘sigma-squared’) is large, you get 
‘wider’ or ‘flatter’ Gaussians. When it is small, you get sharper Gaussians.  Hence, when using 
a small sigma-squared, the contour density will appear closer, or tighter, around the support 
vector points.  In 2-D, as a point gets closer to a support vector, it will approach exp(0)=1, and 
as it gets farther away, it approaches exp(–infinity)= 0. 
Note that you can combine several radial basis function kernels to get a perfect fit around any 
set of data points, but this will usually amount to a typical case of over-fitting – there are 2 
free parameters for every RBF kernel function.  
 
4. Sigmoidal (tanh) kernel.  This allows for a combination of linear decision boundaries, 
like neural nets. 

 

K (u, v) = tanh(ku ⋅ v + b)

K (u, v) = e
ku⋅v+b +1
ek
u⋅v+b −1

 

 
The properties of this kernel function: it is similar to the sigmoid function; it ranges from –1 to 
+1; it approaches +1 when x >> 0; and it approaches –1 when x << 0.  The resulting decision 
boundaries are logical combinations of linear boundaries, not that different from second-layer 
neurons in neural nets. 
 
5. Linear combinations of kernels (scaling or general linear combination). 
Kernel functions are closed under addition and scaling by a positive factor. 
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Part II. Boosting and the Adaboost algorithm 
0. The idea behind boosting is to find a weighted combination of s “weak” classifiers 
(classifiers that underfit the data and still make mistakes, though as we will see they make 
mistakes on less than ½ the data), h1, h2...,hs, into a single strong classifer, H(x). This will be 
in the form: 

 

H (x) = sign(α1h1(x)+α2h2 (x)++α shs (
x)

H (x) = sign aihi (
x)

i=1

s∑( )
where: H (x)∈{−1,+1},hi (

x)∈{−1,+1}

 

Recall that the sign function simply returns +1 if weighted sum is positive, and –1 if the 
weighted sum is negative (i.e., it classifies the data point as + or –). 
Each training data point is weighted. These weights are denoted wi for i=1, ..., n. Weights are 
like probabilities, from the interval (0, 1], with their sum equal to 1.  BUT weights are never 
0. This implies that all data points have some vote on what the classification shuld be, at all 
times. (You might contrast that with SVMs.)   
 
The general idea will be to pick a single ‘best’ classifier  h (one that has the lowest error rate 
when acting all alone), as an initial ‘stump’ to use.  Then, we will boost the weights of the 
data points that this classifier mis-classifies (makes mistakes on), so as to focus on the next 
classifier h that does best on the re-weighted data points.  This will have the effect of trying to 
fix up the errors that the first classifier made. Then, using this next classifier, we repeat to see 
if we can now do better than in the first round, and so on. In computational practice, we use 
the same sort of entropy-lowering function we used with ID/classifier trees: the one to pick is 
the one that lowers entropy the most.  But usually we will give you a set of classifiers that is 
easier to ‘see’, or will specify the order. 
 
In Boosting we always pick these initial ‘stump’ classifiers so that the error rate is strictly < ½. 
Note that if a stump gives an error rate greater than ½, this can always be ‘flipped’ by 
reversing the + and – classification outputs. (If the stump said –, we make it +, and vice-versa.)  
Classifiers with error exactly equal to ½ are useless because they are no better than flipping a 
fair coin. 
 
1. Here are the definitions we will use. 
Errors: 
The error rate of a classifier s, Es, is simply the sum of all the weights of the training points 
classifier hs gets wrong. 
(1–Es) is 1 minus this sum, the sum of all the weights of the training points classifier hs gets 
correct. 
By assumption, we have that: 
Es < ½   and (1– Es) > ½, so Es < (1– Es), which implies that (1– Es)/Es > 1 
 
Weights:  
αs is defined to be ½ ln[(1– Es)/ Es)], so from the definition of weights, the quantity inside the 
ln term is > 1, so all alphas must be positive numbers. 
 
Let’s write out the Adaboost algorithm and then run through a few iterations of an example 
problem. 
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2. Adaboost algorithm 
Input: training data,  (

x1, y1),…, (xn , yn )  
1. Initialize data point weights. 

    Set 
 
wi

1 =
1
n

 ∀i ∈(1,…,n)  

2. Iterate over all ‘stumps’: for s=1, ..., T 
 a. Train base learner using distribution ws on training data. 
      Get a base (stump) classifier hs(x) that achieves the lowest error rate Es .  
                                      (In examples, these are picked  from pre-defined stumps.)  

 b. Compute the stump weight: α s =
1
2
ln (1− E

s )
Es  

 c. Update weights (3 ways to do this; we pick Winston’s method) 

     For points that the classifier gets correct, wi
s+1 =

1
2
⋅
1

1− Es
⎡
⎣⎢

⎤
⎦⎥
⋅wi

s    

                                              (Note from above that 1– Es> ½, so the fraction 1/(1– Es) must  
                                              be < 2, so the total factor scaling the old weight must 
                                   be < 1, i.e., the weight of correctly classified points must go 
                                             DOWN  in the next round) 

     For points that the classifier gets incorrect, wi
s+1 =

1
2
⋅
1
Es

⎡
⎣⎢

⎤
⎦⎥
⋅wi

s   

                                               (Note from above that  Es < ½, so the fraction 1/Es)  
                                                 must be > 2, so the total factor scaling the old weight must 
                                      be > 1, i.e., the weight of incorrectly classified points must 
                                                go UP in the next round) 
 
3. Termination condition:  

If s > T or if H(x) has error 0 on training data or < some error threshold, exit; 
If there are no more stumps h where the weighted error is < ½, exit (i.e., all stumps 

now have error exactly equal to ½) 
 
4. Output final classifier:  

 
H (x) = sign aihi (

x)
i=1

s∑( )   [this is just the weighted sum of the original stump classifiers] 

 
Note that test stump classifiers that are never used are ones that make more errors than some 
pre-existing test stump.  In other words, if the set of mistakes stump X makes is a superset of 
errors stump Y makes, then Error(X) > Error(Y) is always true, no matter weight distributions 
we use.  Therefore, we will always pick Y over X because it makes fewer errors. So X will 
never be used! 
 
3. Let’s try a boosting problem from an exam (on the other handout). 
 
4. Food for thought questions. 
1. How does the weight αs given to classifier hs relate to the performance of hs as a function 

of the error Es? 
2. How does the error of the classifier Es affect the new weights on the samples? (How does 

it raise or lower them?) 
3. How does AdaBoost end up treating outliers? 
4. Why is not the case that new classifiers “clash” with the old classifiers on the training 

data? 
5. Draw a picture of the training error, theoretical bound on the true error, and the typical test 

error curve. 
6. Do we expect the error of new weak classifiers to increase or decrease with the number of 

rounds of estimation and re-weighting?  Why or why not?
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Answers to these questions: 
 
1. How does the weight αs given to classifier hs relate to the performance of hs as a function 

of the error Es? 
Answer: The lower the error the better the classifier h is on the (weighted) training data, and 
the larger the weight αt we give to the classifier output when classifying new examples. 
 
2. How does the error of the classifier Es affect the new weights on the samples? (How does 

it raise or lower them?) 
Answer: The lower the error, the better the classifier h classifies the (weighted) training 
examples, hence the larger the increase on the weight of the samples that it classifies 
incorrectly and similarly the larger the decrease on those that it classifies correctly. More 
generally, the smaller the error, the more significant the change in the weights on the samples. 
Note that this dependence can be seen indirectly in the AdaBoost algorithm from the weight of 
the corresponding classifier αt

. The lower the error Et, the larger αt, the better ht is on the 
(weighted) training data. 
 
3. How does AdaBoost end up treating outliers? 
Answer: AdaBoost can help us identify outliers since those examples are the hardest to 
classify and therefore their weight is likely to keep increasing as we add more weak classifiers. 
At the same time, the theoretical bound on the training error implies that as we increase the 
number of base/weak classifiers, the final classifier produced by AdaBoost will classify all the 
training examples. This means that the outliers will eventually be “correctly” classified from 
the standpoint of the training data. Yet, as expected, this might lead to overfitting. 
 
4. Why is not the case that new classifiers “clash” with the old classifiers on the training 

data? 
Answer: The intuition is that, by varying the weight on the examples, the new weak classifiers 
are trained to perform well on different sets of examples than those for which the older weak 
classifiers were trained on. A similar intuition is that at the time of classifying new examples, 
those classifiers that are not trained to perform well in such examples will cancel each other 
out and only those that are well trained for such examples will prevail, so to speak, thus 
leading to a weighted majority for the correct label. 
 
5. Draw a picture of the training error, theoretical bound on the true error, and the typical test 

error curve. 
Answer: 

 
 
6. Do we expect the error of new weak classifiers to increase or decrease with the number of 

rounds of estimation and re-weighting?  Why? 
Answer: We expect the error of the weak classifiers to increase in general since they have to 
perform well in those examples for which the weak classifiers found earlier did not perform 
well. In general, those examples will have a lot of weight yet they will also be the hardest to 
classify correctly. 


