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Massachvsetts Institvte of Technology 

Department of Electrical Engineering and Computer Science 
6.034 Recitation 12, Thursday, December 8 

Naïve Bayes & the Holy Grail                                   Prof. Bob Berwick, 32D-728 
 
Agenda: 
0. Probability revie 
1. Naïve Bayes: another classifier (used for, e.g., Spam Asssasin) 
2. How Google does translation 
3. Beyond naïve Bayes: the maximum entropy stewpot 
 
 
0. Basics of probability (review & pictures) 
The fundamentals of probability theory: the axioms of probability.  Why are these important?  The 
power of the purse: Because while there are other attempts to handle the notion of ‘uncertainty’, 
e.g., ‘fuzzy logic’, ‘3-valued logic’, etc., these axioms are the only system with the property that if 
you gamble with them, you cannot be unfairly exploited by an opponent who uses some other 
system (Di Finetti, 1932 theorem).  
 
So, some first concepts.   
We say that A is a random variable if A denotes an event and there is some uncertainty if A is 
true. 
Typically, we let U denote the universe of all possible events (= all “possible worlds”). Then a 
subset of U, call it A, corresponds to the set of events in which A is true. 
 
Example. Let the universe U be the set of all horse races.  Let Paul Revere (abbreviation: P-R) be 
a horse. Then we can let A denote the set of racing events in which Paul Revere wins.  We can 
draw this as a picture, where races labels the outer square, the universe, and the circle inside is the 
set of all events where Paul Revere wins the race: 

 
 
Let us denote by P(A) the fraction of events (possible worlds in the universe of events) in which A 
turns out true. We could spend the next 2 hours on the philosophy of possible worlds and this 
business.  But we won’t.  
We will compute probabilities using an informal notion of areas (formally, we’d use measure 
theory).   
The Universe of all events has total area 1, P(U)=1, because it denotes all the events that are true. 
P(A) then is the area of the smaller rectangle with respect to U (= the fraction of the total universe 
in which Paul Revere wins). P(¬A)= the races in which Paul Revere does not win = the set 
difference between U and A.   From this we will posit 3 axioms regarding P(A): 

(1) 0 ≤ P(A) ≤ 1  [because: the area of A cannot be < 0 or > 1 ] 
(2) P(true)=1       
(3) P(false)=0     
(4) P(A ∨ B) = P(A) + P(B)–P(A,B)  [where ∨ means “or”,  i.e., either A or B must be true;  + 

means “add together”, and the comma  in A, B  means “and”,  i.e., both A and B must be 
true] 

Universe of events 
U= all races

A= Paul Revere 
wins the race
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To see how this last axiom works, let’s look at the racing universe with event A= Paul Revere wins 
and a second event, B= the weather is clear. The shaded area represents the fraction of events 
when both A and B are true, i.e., P(A,B)= true: 

 
 

 
 

It should be apparent that in order to figure out the probability of A or B, we need to add up the 
areas corresponding to A and to B, but then subtract out the shaded area so that it is not counted 
twice.  In this way, we arrive at the formula for the probability of A or B. 
 
We next turn to the notion of conditional probability.  
We let P(A|B) denote the fraction of events/possible worlds in which B is true, and then also have 
A true.  That is, we ‘shrink’ the universe from U down to B, focusing in on a subset possibly more 
relevant to our situation, and use that as our basis to calculate probabilities. 
Example. In the figure below, we illustrate the following situation. Let H= probability that “I have 
a headache”; F= probability that “I am getting the flu”.  These are denoted by the rectangles H and 
F in the figure below. Let us assume: 
P(H) = 1/10; P(F)=1/40.   Now let’s compute the conditional probability P(H|F), i.e., the 
probability that I have a headache given that I have the flu.  This is the fraction of flu-events that 
are also headache events – that is, if we just look at the rectangle F, what proportion of F overlaps 
with H?  (The answer is 1/2).  Thus, P(H|F)=1/2. 

 

 
 
In other words, to find P(H|F), we compute: 

 (# worlds in which H and F are true)/(# worlds in which F is true)  or, 
(area H and F)/(area of F), or 
P(H, F)/P(F) 

 
So this is the formula for conditional probability:  

P(A | B) = P(A,B)
P(B)

.   

Note how P(B) is in the denominator here.  Multiplying out, we obtain the important formula 
called the chain rule which we will uses in the naïve Bayes classifier: 

P(A,B) = P(A | B) ⋅P(B)  
 

Universe of events 
U= all races

A= Paul Revere 
wins the race

B= 
weather 
clear

U

F

H
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Some other manipulations of conditional probability will be used in what follows.  We consider 
two: (i) simplifications to the right of the conditioning bar symbol  |; and (ii) simplifications to the 
left of the conditioning bar symbol. 
Simplifications to the right of the bar: 
Suppose we have lots of conditions to impose on whether or not Paul Revere wins.  For example, 
this could depend on not only if the weather’s clear, but also whether the jockey’s brother is a 
friend of mine, whether Paul Revere won its last race, etc.  In other words: 
 

P(Paul Revere wins | weather clear, jockey’s brother a friend, P-R won last race) 
 

With more factors then, we have less bias, because we are focusing in on our particular situation, 
but we will have more variance, because it will become harder and harder to measure all these 
terms perfectly.  So, sometimes we will want to reduce the number of factors to the right of the 
conditioning symbol to those we are more confident we can estimate; this is called back off. (We 
will see this in action soon).   There is no problem in simply doing this: 

P(Paul Revere wins | weather clear, jockey’s brother a friend, P-R won last race) 
 
And then of course just having P(Paul Revere wins | weather clear) remaining.  But what about if 
there are more terms to the left of the bar, as in this case: 

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear) 
 
Note that if we add terms to the left the probability should get lower and lower every time we add 
a new factor. (Why? Think about intersection.)  If we just care about Paul Revere, are we then 
allowed to simply strike out the other two horses, this way? 

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear) 
 
The answer is: No!  We need to carry out a more complex expansion to isolate Paul Revere on the 
left.  To see how, let’s abbreviate Paul Revere wins as R, Valentine loses as V, Epitaph loses as E, 
and the Weather is clear as W.  Then our conditional probability: 
 

P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear) 
 
Can be abbreviated as: 

P(R,V ,E,W )
P(W )

 

 
We can use this formula to derive the chain rule for conditional probability: 
 
P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear)= 

P(Paul Revere wins| Valentine loses, Epitaph loses, weather clear) × 
 P(Valentine loses | Epitaph loses, weather clear) × 
  P(Epitaph loses | weather clear) 
 

Proof.  Writing out the 3 terms: 
P(R,V ,E,W )

P(W )
=
P(R,V ,E,W )
P(V ,E,W )

×
P(V ,E,W )
P(E,W )

×
P(E,W )
P(W )

 

 
 

Now, supposed it is the case that the following simpler expansion holds: 
P(Paul Revere wins, Valentine loses, Epitaph loses | weather clear) = 

P(Paul Revere wins| Valentine loses, Epitaph loses, weather clear) × 
 P(Valentine loses | Epitaph loses, weather clear) × 
  P(Epitaph loses | weather clear) 
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In this case, whether Paul Revere wins or not depends only on whether the weather’s clear…and 
not on what the other two horses do.  They are irrelevant factors, so we can strike them out.  In this 
case, when the probability is unchanged when we drop out conditioning factors, we say that the 
probability is conditionally independent (independent of the other horses, but still conditioned on 
the weather).  More generally, if there are n factors f, and each factor is independent of the other, 
but still dependent on a condition c, we can write the following, which will be another key 
ingredient in our naïve Bayes classifier model: 

 P( f1,…, fn | c) = P( f1 | c)×…× P( fn | c)  
That is, we can just write out the probability as the product of the n factors,  assuming they are 
independent from one another (the outcomes of these events do not affect the outcomes of one 
another); note the factors are still dependent on the outcome of event c.  
 
OK, we come to the last ingredient we shall need, Bayes’ Law. Again we can illustrate this with 
the simple picture of headache and flu as before.  Recall P(H)=1/10; P(F)=1/40, P(H|F)=1/2. 
 

 
Now we will label each of the distinct regions in this diagram, A, B, and C, as follows. A+B=area 
of F; B+C= area of H: 

 

 
By the definition of conditional probability, P(H|F)= P(H,F)/ P(F) = B/(A+B). 
Now consider this reasoning:  one day you wake up with a headache, and you think, OMG, 50% of 
flus are associated with headaches, so now I have a 50-50 chance of getting the flu.”  Is this 
reasoning correct? 
 
What we want to compute is: P(H|F).  We already know the other conditional probability, that of 
headache given the flu.  Further, by the definition of conditional probability, in terms of the 
regions A, B, and C, we have that: P(F|H) = B/(B+C).  To find this last ratio of regions, we can 
take the conditional probability P(F|H) = B/(A+B), and multiply it by (A +B)/(B + C), as follows: 

 

B
B +C

=
B

A + B
⋅
A + B
B +C

 i.e.,

P(F | H ) = P(H | F)i P(F)
P(H )

in our example, 1 / 2 ×1 / 40
1 /10

=
1 / 80
1 /10

=
1
8

 

 
The term P(F) is called the prior probability (of getting the flu); the term P(H|F) is called the 
likelihood; the term P(H) is the evidence (e.g., that you have a headache); and the term P(F|H) is 

U

F

H

U

A

B
C

F

H
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called the posterior probability of getting the flu (given that you have a headache). So this 
updated probability is a kind of learning: given the fact (data) that you indeed have a headache, 
how does the probability of getting the flu change? (It increases from 1/40 to 1/8.)  Inverting from 
P(H|F) to P(F|H) is called Bayes’ Law.  It follows from a very simple manipulation of the 
definition of conditional probability and then application of the chain rule, i.e., that P(A,B)= 
P(A|B)×P(B): 

P(B | A) = P(A,B)
P(A)

 (by dfn of conditional probability)

=
P(A | B) ⋅P(B)

P(A)
  (by chain rule, replacing P(A,B))

 

Or in words we can say this: 

posterior = likelihood ×  prior
evidence

 

 
Now let’s put this all to work to build a classifier called Naïve Bayes.  Like k-means and ID-trees, 
and Boosting, etc., this will take as input the values of some features and then output a 
classification label.   
As our example, we will use the common, but valuable task of classifying email into 1 of 2 
categories: either good email (“ham”) or bad email (“spam”).  The underlying probability model 
follows what is called a Bayes’ net.  We can imagine the following generative process: we pick a 
label, e.g., “ham”, and given this label, email documents of this type will have a certain 
distribution of feature values f1, …, fn.  If we pick the other label, “spam”, we will get another 
distribution for the feature values (hopefully distinct).  So the picture looks like this, and the idea 
of course is that given a new email, we would like to figure out whether it is ham or spam: 

 
Crucially, we assume that the features are independent from one another. (This is the “naïve” 
part of Naïve Bayes.) Their values depend on (are conditioned on) only the value of the label.  
That is why we draw the networks as above, with no links between the features, only from the 
label directed down to the features. 
 
Now here’s the idea behind the classification..  Suppose we have estimated that 90% of our email 
is “ham” (OK), and that 10% is “spam”. This gives us our prior probability estimates 
P(label=ham)=0.9 and P(label=spam)=0.1.  That’s what we can say about any new email without 
any additional information. (We’ll see below how we get these estimates.)  
Now, when we get a new email, we will get the values of its features and use these to adjust the 
prior probabilities, as with our headache example.  (In our example, to keep things simple, we will 
use only two features.) 
 
So, this new email comes along:  “Buy this amazing new Ginsu knife for only $39…..”   
Is this ham or spam?  We’ll assume that we use the following 2 features: 
 
Feature 1: The email mentions money; this occurs in 30% of spam, and in 1% of ham 
Feature 2: The email contains the word ‘buy’; this occurs in 10% of spam, and in 0.5% of ham 
 

label= 
ham

label= 
spam

feature ...
f1

...feature
fn

feature ...
f1

...feature
fn



 6 

We can picture our calculation as follows: our initial prior probabilities for each category are 
adjusted by multiplying the contribution each feature ‘votes’ (independently) as to how likely 
each category is.  Then we pick the most likely = biggest probability category at the end: 

 
So, in this case, our new email is classified as “spam” because this yields the largest posterior 
likelihood.  Note how we got this value.  It is simply this: 
 
P(label)× P( f1 | label)× P( f2 | label) = P(label, f1, f2 )  [recall from dfn of conditional prob that:
P(label, f1, f2 )
P(label)

= P( f1 | label)× P( f2 | label)  IF f1, f2  are independent of one another]
 

In other words, we multiply the following out to find the label likelihood, and pick the biggest 
likelihood: 

Prior probability of a label × Probability of feature contributions =  Posterior label likelihood 
 
In our case, for the two labels “ham” and “spam”: 
 Prior × Pr(feat1 ($)| lable)  ×  Pr(feat 2 (‘buy’)|label)  = Label likelihood 
Ham:  0.9  ×  0.01 ×            0.005   = 0.000045  (log of this likelihood: –4.34) 
Spam: 0.1  ×   0.30  ×           0.10  = 0.00303    (log of this likelihood: –2.52) 
 
So, our email is more likely to be spam than ham.  In fact, taking the ratios of the log likelihoods, 
–2.52/–4.32, the email is about 2 orders of magnitude (100x) more likely to be spam than ham. 
Recall that: (1) the features must be independent of one another; (2) we can add other features, of 
course…this is what a program like Spam Assassin can do, by training; and (3) one can use this 
method with lots more categories to classify documents (see the end of the handout). 
 
Let’s turn to justifying this approach probabilistically, as well as how we actually estimate the 
probability values above, via training, and highlighting some pitfalls.  
 
First, why is this justified?  We are computing the maximum probability that an input email will 
have a particular label (category), given that it has a particular set of features.  We pick the label 
that maximizes: P(l=value | observed features).  Let’s follow out this logic. We are maximizing the 
following quantity over label values: 

 maxP(label | features) = max P( features, label)
P( features)

   [by dfn of conditional probability]  

But note that the denominator in the expression above, P(features) = P(f1, …, fn) is constant no 
matter what our choice of label value. So, to maximize the above quantity, it suffices to maximize 
the numerator: 

 maxP( features, label) = P( f1,…, fn , label)  
By the chain rule, this quantity in turn is just: 

 maxP(label)× P( f1, ,…, fn | label)  

0

0.9

1

0.1

Prior estimate

HAMSPAM

X

0

0.3

1

0.01

Prob feature 1
given label

HAMSPAM

X

0

1

0.1

HAMSPAM

=

Prob feature 2
given label

Mentions $$ Contains ‘buy’ Posterior likelihood

0

1

0.003

HAMSPAM
Probability of

(label, feat1, feat2)

0.005

Prior probability
estimate
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But given that the features are all independent of one another, this is the same as (recall our Paul 
Revere example!): 

 

maxP(label)× P( f1 | label)×…× P( fn | label)
max prior     × 'vote ' f1       ×…× 'vote ' fn  

 

 
Putting this down as a formula, we have: 

 
This is exactly the computation we have carried out. It remains to figure out how we ‘train’ our 
classifier – that is, how do we get the various estimates of the probabilities above?  The simplest 
thing is just to estimate them from counts in training text, that is, known examples of ham and 
spam emails.  These are the so-called maximum likelihood estimates: 

P(label = ham) = count  (# ham emails)
count(total # emails)

     P(label = spam) =  count  (# spam emails)
count(total # emails)

P( f1 | label = ham) = count  (# ham emails mention $)
count(total # ham emails)

   

P( f1 | label = spam) = count  (# spam emails mention $)
count(total # spam emails)

P( f2 | label = ham) = count  (# ham emails contain 'buy')
count(total # ham emails)

 

 P( f2 | label = spam) = count  (# spam emails contain 'buy')
count(total # spam emails)

 

 
So this is how we get the estimates.  For example, if we have 1000 emails, 900/1000 are ham, and 
100/1000 are spam.  Of the 100 spam emails, 30/100 mention money, and 1/100 contain ‘buy’.  
For ham emails, 1/100 mention money and 5/1000 contain ‘buy’.   
Note that as the # of data samples (amount of training data) increases, then our estimates should 
get better; one of the properties of the maximum likelihood estimates is that they will converge to 
the ‘true’ values as the amount of data goes to infinity.  (The mean approaches the true average.)  
But, if the # of training examples is small, our estimate will be very lousy, and have more noise 
(variance); there are a variety of things we can do to improve this, but that’s for a machine learning 
course.   
 
A second worked example: 
MIT decides to use surveys to determine how to sort students into into dorms.     They decide to 
use Naive Bayes and survey data from current residents to classify where to put future students. 
 
To collect this “training data:, they surveyed 30 random students. 
Each surveyed student is asked to fill out a simple questionaire with 3 true/false questions. 

 
0. Which dorm do you live in: {East Campus, West Campus, or FSILG} 
1. Are a Pyro – i.e. do you enjoy performing feats with fire (or inadvertently trigger fire alarms)? 
2. Are you a foreign student or do you like studying foreign languages? 
3. Are you in Good shape? 
 

 

 

argmax
C

P (C|f1, . . . , fn) = argmax
C

P (C)
�n

i=1 P (fi|C)

P (f1, . . . , fn)
= argmax

C
P (C)

n�

i=1

P (fi|C)
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Here are the results. It turns out that our random survey gave us exactly 10 students from each 
dorm group. 

 Pyro  ForeignLang  GoodShape    # surveyed  

East Campus  8/10  1/10  3/10    10    10/30  

West Campus  3/10  6/10  3/10    10    10/30  

FSILG  1/10  3/10  8/10    10    10/30  
 
 
What can you do this data?   We can use these counts to make estimates of the following 
probabilities: 
     
    P(C)          (the prior probability of being in any dorm)   
    P(fi | C)    (the likelihood of having one of the 3 features given being in a particular dorm) 
 
E.g.  P(Pyro=True | C=East Campus) = 8 /10      P(Language = True|C= FSILG) = 3/10 
 
Now we can use these probability estimates to classify new students by applying Bayes rule, i.e., 
our formula: 

 

 
Question 1: where would a new student who loves foreign languages most likely be classified if 
they filled in their incoming survey as follows: 
 
Pyro = True 
ForeignLang = False 
GoodShape = False 
 
To do this, we compute P(Ci| Pyro=True, ForeignLang=False, Goodshape=False) for all three 
possible campuses, and find the largest one! (That is what the “arg max” part means.) 
 
For C= East campus: 
      argmax P(C=East | P=T, F=F, G=F)   
   = argmax P(C=East) * [P(P=T | C=East)  P(L=F|C=East)  P(G=F|C=East) ] 
   = (10/30) * [(8/10) (1–1/10)(1–3/10) ]  = 1/3*[(8*9*7)/1000] = 1/3 * [/1000] 
   = 0.072000  
 
For C= West campus: 
      argmax P(C=West | P=T, F=F,G=F)  
   = argmax P(C=West) * [P(P=T | C=West) P(L=F|C=West) P(G=F|C=West) ]  
   = (10/30) * [ (3/10) (1–6/10)(1–3/10) ] 
   = 1/3 * [ 3*4*7/1000]   =  1/3 * [84/1000] 
   = 0.028000 
 
For C= FSILG: 
     argmax P(C=FSILG | P=T,F=F,G=F) 
   = P(C=FSILG)*[P(P=T|C=FSILG) P(L=FC=FSILG) P(G=F|C=FSILG) ] 
   = (10/30) * [(1/10) (1–3/10)(1–8/10)]  
   = 1/3*[ (1*7*2*)/1000 = 1/3 * [14/1000] = 1/3[14/1000] 
   = 0.004667 
 

argmax
C

P (C|f1, . . . , fn) = argmax
C

P (C)
n�

i=1

P (fi|C)
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The largest value for such a student (Pyros true, all other attributes, false) is East Campus. 
 
Question 2. What about an all-round student who checks all the boxes in the incoming survey? 
P(C=? | Pyro = True, ForeignLang = True, GoodShape = True) 
 
P(C=East | P=T, F=T, G=T) 
   = P(C=East) * [P(P=T|C=East)P(L=T|C=East)P(G=T|C=East) ] 
   = 10/30* [(8/10) (1/10)(3/10)] 
   = 1/3 * [8*1*3/1000] = 1/3 * [24/1000] 
   = 0.008000 
 
P(C=West Campus| P=T, F=T, G=T) 
  = P(C=West) * [P(P=F|C=West) P(L=T|C=West) P(G=T|C=West)]  
  = 10/30 * [(3/10) (6/10)(3/10)] 
  = 1/3 * [(3*6 *3/1000) = 1/3 *[54/1000] 
  =   
 
P(C=FSILG| P=T, F=T,G=T) 
  = P(C=FSILG) * [ P(P=T |C=FSILG)P(L=T|C=FSILG)P(G=T|C=FSILG)]   
  = (1/3) * [ (1/10)(3/10)(8/10)]  
  = 1/3 *   [1*3*8/1000] = 1/3  * [24/1000] 
  = 0.008000 
 
The maximum C is West Campus.  
 
In Naive Bayes, the P(C= some value) is also known as the “prior”.   Knowledge about the prior 
probabilities can help us distinguish what proportion to assign to each class.   In our case we got 
lucky and it just happened that each campus got 10 students, so the prior in this case is Uniform. 
 
Estimation & its discontents 
There is at least one particular case about estimating the probabilities from data counts that we 
should note.  Suppose a particular count is actually 0 – that is, we never observe a particular 
feature associated with a particular label – this will happen especially if we keep adding more and 
more features. In this case, note that the entire probability product to find the likelihood will all be 
zero, just because one of the estimates is 0. So this is very bad!   
 
There is a whole cottage industry devoted to fixing this problem, and it is called smoothing.  It is 
basically the Robin Hood strategy: we rob probability mass from the rich and give it to the poor.  
In particular, the simplest smoothing strategy, invented by Laplace, is called add–1 smoothing: if a 
count is 0, we add 1 to it, so that, e.g., 0/100 goes to 1/100.  (We must also subtract the appropriate 
probability mass, i.e., counts, from the rest of our estimates, so that the probabilities still add up to 
1 in all.) 
 
A second method of smoothing (probability mass redistribution) is due to Alan Turing.  He figured 
this out when he was developing probability formulas for estimating the likelihood of finding 
German submarines in particular areas of the ocean.  What if a submarine had never been observed 
in a particular spot?  (Something that’s actually quite likely!)  Turing reasoned that a fairly good 
probability estimate of ‘things never seen’ would be quite close to the estimate of ‘things seen 
exactly once’.  This method, now called Good-Turing smoothing (only published until decades 
after WWII), works well but is finicky.  There are whole books devoted to this subject, for 
machine learning and especially in natural language processing, where we quickly get word 
sequences never seen before. 
 
One more thing.  You may note that in our calculation we multiply together a (possibly long) 
string of probabilities, one for each feature.  With a 1000 features, this value will quickly get very, 
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very small.  So, the usual method is to operate in log space, where multiplication is just addition, 
so we can maintain accuracy.  (That’s why we used log likelihoods above.) 
 
Beyond Naïve Bayes (Optional) 
OK, this method is fine so far as it goes, but it can be improved enormously.  Here we will just 
sketch one method, known as maximum entropy classification that can gobble down any set of 
features, even if they are not independent.  Yet remarkably, as first shown by Jaynes (1957), it is 
the most probabilistically sound method of combining diverse features.  It rationalizes the 
general notion of just ‘scoring’ features and adding them up.  We won’t prove this here, but just 
indicate the general approach, which is now broadly used in, e.g., figuring out the part of speech 
labels in text. (For instance, in the sentence, police police police, is the first police a Noun or a 
Verb?) 
 
1. To begin, let’s assume there are now 10 labels for documents, with categories A, B, C, D, E, F, 
G, H, I, J.  (So, e.g., category A could be travel; B sports; C business; etc.)  If we know this, and 
no other information then given an email m, what is our best guess for category C (business) 
given this email, i.e., P(C | m)? 
The maximum entropy approach would claim it is 1/10: that is, we maximize the quantity in each 
of the 10 bins, uniformly, by spreading out the total probability mass of 1 among 10 bins. 
 
2. Now suppose I tell you that 55% of all emails are in category A, travel?  Now what is the 
quantity P(C| m)?  I think it should not be too hard to see that A gobbles up 0.55 of the probability 
mass, leaving 0.45 to be distributed evenly over the remaining 9 categories, or 0.05 for each of the 
remaining categories, including category C, business. So the maximum entropy estimate for P(C| 
m) is 0.05. 
 
3. Now suppose I add another constraint: that in addition to the fact in (2), we know that 10% of 
all emails contain the word ‘buy’.  What is P(C| m)  now?  This gets harder to visualize, so we’ll 
write it out as a table, where the first row is the probability of containing ‘buy’ (which thus must 
add up to 0.1 of all emails), and second row is the probability of not containing ‘buy’, which we 
have labeled other (which thus must add up to 0.9). Once again following the maximum entropy 
idea, since we don’t know anything else about the ‘contains buy’ row, we should distribute its 0.1 
total evenly among the 10 bins, thus giving 0.01 to each.  Next, since all of category A must add up 
to 0.55, and since the ‘contains buy’ cell holds 0.01, it must be that the cell in the row labeled 
other and in column A must have the value 0.54 (so that the column total is 0.55).  That leaves 
0.9–0.54 = 0.36 for the rest of the 9 bins in the other row.  Once again, spreading this evenly, we 
get 0.36/9 = 0.04 for each of these bins (so that each column here adds to 05).  Thus we have the 
following table: 

 1 2 3 4 5 6 7 8 9 10 
 A B C D E F G H I J 

buy 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
other 0.54 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
 
So, why is this called maximum entropy?  You should realize that by spreading out the values 
evenly, we are maximizing the entropy of the cell values: –p log p summed over all entries is at a 
maximum.  (Below we indicate why this is a good thing to do.) In any case, we are maximizing the 
entropy subject to the constraints specified. (We have two so far.) 
 
4. So let’s add one more constraint.  Suppose that in addition, 80% of the ‘buy’ emails are in either 
category A or category C.  Now we want to figure out P(C| m). Gulp!  This one is much harder to 
figure out – in fact, in general to do this, it is like spreadsheets, but we can indicate what has to be 
true in our table now: the probability of the buy row, column A, plus the probability in the buy row, 
column C, must add up to 0.08 (80% of the 10%).  That turns out to be the values 0.051 and 0.029. 
Since that leaves 0.020 for the rest of the bins in the buy row, these must be 0.020/8=0.0025.  
Since column A must still add up to 0.55, then that leaves 0.499 for row other, column A.  Since 
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the other row must still sum to 0.9, we have 0.9–0.499= 0.401 to distribute evenly over the rest of 
the other bins, so this is 0.401/9 = 0.0446. If we impose these constraints, you’ll see that this is the 
answer (we don’t say how we figured it out!) 

 1 2 3 4 5 6 7 8 9 10 
 A B C D E F G H I J 

buy 0.051 .0025 0.029 .0025 .0025 .0025 .0025 .0025 .0025 .0025 
other 0.499 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 .0446 
 
Now we know that P(buy,C)= 0.029; P(C| buy)= 0.29 (= 0.029/0.1); P(A | buy)= 0.51. 
This is our classifier, a maximum entropy classifier.   
 
The punchline.  While there are many possible distributions that could yield the three observed 
constraints, that 55% of the emails are in category A, that 10% of the emails contain buy, and that 
of these 10%, 80% are in category A or C, the one distribution that we picked, where we have 
maximized the entropy of the probability mass subject to these constraints, turns out to be the 
only one having the following two properties, the second one quite remarkable: 

1. This distribution follows the form: P(email, label) =
1

Z(λ)
exp λii∑ fi (email, label)  where 

the lambdas are the weights associated with each feature fi; the function fi returns 1 if the 
feature is in the email, and 0 otherwise; and Z is a normalizing constant to make sure the 
probabilities all add up to 1. 

2. This distribution maximizes the probability of the training data, P(email j , label j )j∏  

 
This is what justifies the method! 

 
 


