
 1 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Electrical Engineering and Computer Science 

6.034 Artificial Intelligence, Fall 2011 
Recitation 6, October 20  

K-NN and ID Tree Notes, Cliff Notes Version                         Prof. Bob Berwick, 32D-728           
 
0. Basics 
The general goal of machine learning = make accurate predictions about unknown data after being trained on 
known data. 
There are two kinds of training: supervised, where the desired output is provided along with the input; and 
unsupervised, where the desired output is not provided.  We will focus on supervised learning methods 
here. 
Data comes in the form of examples, in the format: (x1, …, xn, y) 
Here, x1, …, xn, are also known as features, inputs,∫ or dimensions, while y is the desired (or observed) 
output or class label.  A feature is a descriptor or property used to characterize the input for learning. We call 
the space where feature values define the coordinate axes a feature space.  The input vector for each 
example defines a point in feature space 
Both the x’s and the y’s can be discrete (taking on values from, say, {0, 1} or some fixed set of label names 
or classes) or continuous.  
In machine learning training we are given some (finite) set of (x1, …, xn, y) tuples. From this we output some 
learned classification or prediction function. 
 
Note that K-Nearest Neighbors (KNN) and ID Trees are both supervised, classification learning algorithms 
 
In machine learning testing we are given just (x1, …, xn) and the goal is to predict y with high accuracy.  
Training error is the classification error measured using training data to test. 
Testing error is classification error on data not seen in the training phase. 
Checking for over-fitting - Cross-validation: split sample data into N subsets, use each subset as test set, 
the rest as training set; use average and standard deviation of performance on test sets to characterize 
prediction performance. 
 
1. k-Nearest Neighbors 
  Training – Store all feature vectors in the training set, along with each class label. 
  Prediction – Given a query feature vector, find “nearest” stored feature vector and return the associated 

class. 
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 va1 is the value of feature 1 in vector a 
 vb1 is the value of feature 1 in vector b 
 … 
 wn is the weight for feature n (see below for some common metrics used for distance and other points 
about weighting) 
 
1-NN: Given an unknown point, pick the closest 1 neighbor by some distance measure. 
           Class of the unknown is the 1-nearest neighbor's label. 
 
k-NN: Given an unknown, pick the k closest neighbors by some distance function. 
           Class of unknown is the mode of the k-nearest neighbor's labels. 
           k is usually an odd number to facilitate tie breaking. 
 
Normalization?  To separate values clustered close together, divide by the standard deviation 
Relevant features?  All features  are used; to find relevant ones, have to cross-validate, dropping features out. 
What’s the k?   Can find best value using cross-validation 
Voting for vectors?  k-Nearest Neighbors votes on class for query feature vector; reduces sensitivity to noise 
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k-NN fixes a set of decision boundaries for whether a point is/is not in a given class. (We will see that other 
learning methods also fix decision boundaries). 
 
How to draw 1-NN decision boundaries 
Decision boundaries are defined as lines on which it is equally likely for a data point to be in any of the classes 

1. Examine the region where you think decision boundaries should occur.  
2. Find oppositely labeled points (+/-) and connect them, forming a line. 
3. Draw perpendicular bisectors of these lines. (Use a pencil) 
4. Extend and join all bisectors.  Erase extraneously extended lines. 
5. Remember to draw boundaries to the edge of the graph and indicate it with arrows! (a very common 

mistake). 
6. Your 1-NN boundaries generally should have sharp edges and corners (otherwise, you are doing something 

wrong or drawing boundaries for a higher order k-NN). 
 
Let’s practice drawing  k–NN  boundaries.  Turn to the end of the handout where we show you how the ‘recipe’ 
works; then we have a practice problem for you to try. 
 
Here are some standard distance metrics to use 
Euclidean Distance (common)       
   
Manhattan Distance  (Block distance) 
- Sum of distances in each dimension    

Hamming Distance  
- Sum of differences in each dimension  

 
                                                    
I(x,y) = 0 if identical, 1 if different.  

Cosine Similarity 
- Used in Text classification; words are dimensions; 
documents are vectors of words; vector component is 
1 if word i exists.  

  

 
Note that it is also sometimes helpful to transform the data from one space to another.  For example, if data 
are scattered in ring-like patterns of classes, then a transformation to polar coordinates typically helps. 
(Why?)  

This is true of the practice problem we just did, as we will show in more detail below when using another 
learning method, ID trees. 
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Nearest neightbors, optional: How to weigh dimensions differently 
In Euclidean distance all dimensions are treated the same.   But in practice not all dimensions are equally 
important or useful!  

Example: Suppose we represent documents as vectors of words. Consider the task of classifying documents 
related to Red Sox.    If all words are equal, then the word  the weighs the same as the word Sox. But almost 
every English document contain the word the. But only sports related documents have the word  Sox. So we 
want the k-NN distance metrics to weight meaningful words like Sox more than functional words like the. 
 
For text classification, a weight scheme used to make some dimensions (words) more important than others 
is known as: TF-IDF 

 

 

 
Here: 
  tf:  Words that occur frequently should be weighed more. 
 idf: Words that occur in all the documents (functional-words like the, of etc) should be weighed less.   

Using this weighing scheme with a distance metric, knn would produce better (more relevant) 
classifications. 
 
Another way to vary the importance of different dimensions is to use: Mahalanobis Distance 

 
Here S is a covariance matrix.   Dimensions that show more variance are weighted more heavily. 
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2. Identification Trees (ID trees or decision trees) 
Algorithm:  Build a decision tree by greedily picking the “lowest disorder” feature tests. The best split for a 
set of data minimizes the average disorder (more precisely, we want the split that decreases the average 
disorder the most).  We define these terms immediately below. 
Training – Divide the feature space into boxes that have uniform labels. Split the space recursively along 
each axis to define a tree. (Note this forms a set of boundaries that ‘tile’ the plane in terms of perpindiculars.) 
NOTE: This algorithm is greedy (local hill climbing) so it does not guarantee that the tree will have the 
minimum total disorder! 
 
The notion of “disorder” is defined using entropy, H.  
We define the entropy (disorder), following Shannon’s definition, of a discrete random variable X that has 
the probability mass function p, as follows: 

− p(xi )log2i=1

n∑ p(xi )  
So for example, suppose a drawer contains 3 red socks and 7 green socks. Then the entropy of this collection 
of socks in one drawer is (see the graph on the next page for a plot of this function where there are only two 
classes and one ‘bin’): 
 

 –3/10 log2 3/10+ –7/10 log2 7/10 = –0.3(-1.7369)–0.7(-0.5145)= +0.902570 
 
Note that the disorder here is at a maximum when the two kinds of socks are equally distributed; and a 
minimum when either color is absent (uniform color), so the probability of one possibility is 0, and  –plog2 p 
of the other color is 1 x 0=0, so H is 0. 
 
For ID trees, we will need to find the weighted average of disorder across a set of classes or ‘bins’.  The 
average entropy or disorder for a split = Entropy for each region (bin) times the fraction of the total data 
points that are in that region (bin) – a weighted average of the disorder, weighted by the # of data points in 
each class or bin. 
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nb is the total number of samples in branch b 
nt is the total number of samples in all branches 
nbc is the total of samples in branch b of class c 

 
Let’s practice calculating this. A simple example with 3 bins (classes), and 2 possibilities, + or O: 
 

+ O O O + + O + + O O O + + O + + + + + 
 

We calculate the entropy H in each of the three classes: 
Class 1: 3 +, 4 O, 8 total, so + probability is 3/8 = 0.375, so from our 2nd graph:  H1= 0.95 
Class 2: 3 +, 2 O, 6 total, so + probability is 3/6 = ½, so H2= ½ + ½ = 1.0 
Class 3: 7 +, 1 O, 8 total, so + probability is 7/8 =  
Now we compute the weighted average of these three H values. There are 8+6+8 objects in all, or 22, so: 

8/22(H1)+6/22(H2)+8/22(H3) = 0.36(0.95)+0.18(1)+ 0.36(0.54)= 0.34+0.18+0.19=0.71 
 
This is the average disorder of this particular split into 3 classes.  This is the number used to ‘drive’ the 
algorithm, which attempts to find the split that achieves the lowest average disorder. 
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See also the table of binary entropy values a few pages later on.
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Example formulas. 
The disorder equation for a test with two branches, left and right, (l, r), with each branch having 2 (binary) 
classes or bins.  
Let a = count of class 1 on the left side; b = count of class 2 on the left side; 
Let c = count of class 1 on the right side; d = count of class 2 on the right side 
a + b = l   c + d = r; r+l= T 
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For a test with 3 branches, and 2 binary class outputs (this is the formula for the example we explicitly did 
earlier): 
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b1
T
H a

b1

⎛
⎝⎜

⎞
⎠⎟
+
b2
T
H c

b2

⎛
⎝⎜

⎞
⎠⎟
+
b3
T
H e

b3

⎛
⎝⎜

⎞
⎠⎟

  

 
a = count of class 1 on branch 1      b = count of class 2 on branch 1 
c = count of class 1 on branch 2      d = count of class 2 on branch 2 
e = count of class 1 on branch 3      f =  count of class 2 in branch 3 
a+b = b1     c + d = b2    e + f = b3 

Homogeneous Partitioning Trick 
A time-saving heuristic shortcut to picking the lowest disorder test. 
1. Pick tests that break the space into a homogeneous portion and a non-homogeneous portion 
2. Pick the test that partitions out the largest homogeneous portion; that test will most likely have the lowest 
disorder. 
Caution! when the homogeneous portions are about the same size, you should compute the full disorder 
value.  This is where this shortcut might break down! 

ID trees and Prediction – Test features of a query feature vector according to the identification tree 
generated during training, return the class at the leaf of the tree. 
Relevant features?  Irrelevant features are ignored because have large disorders. 
Whose Razor?  Occam’s: The world is inherently simple. Choose the smallest consistent tree. 
Why greedy?  Finding the simplest tree is computationally intractable; so we use a greedy search using 
minimum average disorder as a heuristic. 
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Table of common Binary Entropy values 

Note: because H(x) is a symmetric function, i.e. H(1/3) = H(2/3),  fractions > 1/2  are omitted. 
/3 to /9  /10 to /13  
numerator  denominator  fraction  H(fraction)  
1  3  0.33  0.92  
2  3  0.67  0.92  
1  4  0.25  0.81  
2  4  0.50  1.00  
1  5  0.20  0.72  
2  5  0.40  0.97  
3  5  0.60  0.97  
1  6  0.17  0.65  
2  6  0.33  0.92  
3  6  0.50  1.00  
1  7  0.14  0.59  
2  7  0.29  0.86  
3  7  0.43  0.99  
1  8  0.13  0.54  
2  8  0.25  0.81  
3  8  0.38  0.95  
4  8  0.50  1.00  
1  9  0.11  0.50  
2  9  0.22  0.76  
3  9  0.33  0.92  
4  9  0.44  0.99   

numerator  denominator  fraction  H(fraction)  
1  10  0.10  0.47  
2  10  0.20  0.72  
3  10  0.30  0.88  
4  10  0.40  0.97  
1  11  0.09  0.44  
2  11  0.18  0.68  
3  11  0.27  0.85  
4  11  0.36  0.95  
5  11  0.45  0.99  
1  12  0.08  0.41  
2  12  0.17  0.65  
3  12  0.25  0.81  
5  12  0.42  0.98  
1  13  0.08  0.39  
2  13  0.15  0.62  
3  13  0.23  0.78  
4  13  0.31  0.89  
5  13  0.38  0.96  
6  13  0.46  1.00   

 
Try some sample ‘cuts’ in these two figures….which is the best single cut(s) in each?  Why? And the next 
cut? 
 

 



6.034 Recitation October 20:  Nearest Neighbors, Drawing decision boundaries     
 
 
 
Boundary lines are formed by the intersection of perpendicular bisectors of every pair of points.  
Using pairs of closest points in different classes gives a good enough approximation.  (To be 
absolutely sure about the boundaries, one would draw perpendicular bisectors between each pair of 
neighboring points to create a region for each point, then consolidate regions belonging to the same 
class, i.e., remove the boundaries separating points in the same class.  This technique is unnecessary 
for our purposes.) 
 
 

 



 
 
 

 

Construct lines 
between closest 
pairs of points in 
different classes. 
 
Draw perpendicular 
bisectors. 
 
 

End bisectors at 
intersections; extend 
beyond axes (to 
infinity). 



10/20/11 Nearest Neighbors Practice Problem 1 
Lucy has been working hard for the credit card companies to detect fraud. They have asked her to 
analyze a number of classification methods to determine which one is best suited to their problem. 
The two quantities that they have provided her are the change in longitude from the purchase 
location to the registered address and the amount that the purchase is over or under the average 
purchase that the customer usually makes. 

 

Part A:  Nearest Neighbors (15 pts) 
Lucy decides to use nearest neighbors to solve this problem and plots the fraudulent / non-
fraudulent data. Squares are fraudulent and circles are non-fraudulent. Sketch the resulting decision 
boundary on the figure below. 

  

 



  
It is the end of the month and Lucy’s boss comes over with new data hot off the presses (the 
triangle). He wants Lucy to analyze whether or not the new charge is fraudulent. 

 
   

  
What is the nearest neighbor classification of the new charge, fraudulent or non-fraudulent? 

 
 
 
 
 
 
 

She’s not too sure about this classification and decides to rerun it using k-nearest neighbors for 
k=3 and then for k=5. Is the charge fraudulent for these values of k?  

 
 
      K= 3: 
 
      K= 5: 
 
 

11
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6.034 Recitation Thursday, October 20, 2011 
 
Practice Problem 2: k-Nearest Neighbors 
 
The 6.034 staff has decided to launch a search for the newest AI superstar by hosting a television show 
that will make one aspiring student an MIT Idol. The staff has judged two criteria important in choosing 
successful candidates: work ethic (W) and raw talent (R).  The staff will classify candidates into either 
potential superstar (black dot) or normal student (open circle) using a nearest-neighbors classifier. 
 
On the graph below, draw the decision boundaries that a 1-nearest-neighbor classifier would find 
in the R-W plane. 
 
 

 



Identification trees Problem 1 (same credit card problem as k-NN above) 

B1 The boundaries (18 pts) 

Lucy now decides that she’ll try to use identification trees on the data. There are three likely 
candidates for splitting the data: x=0.0, x=-1.01 and x=1.01.  Note that the -1.01 and 1.01 values lie 
half-way between a square and a circle with nearby x values. Compute the average disorder for the 
decision boundary x=1.01.   Your answer may contain logarithms. 
 
 
 
 
 

 
Compute the average disorder for the decision boundary x=0.0.   Again, your answer may 

contain logarithms. 
 

 

Which of the two decision boundaries, x= 0.0 and x=1.01, is added first?  
 

 
 
 
Sketch all of the decision boundaries on the figure below.  Assume that x= 0.0 and x=1.01, in the 
order you determined above, are the first two decision boundaries selected (this may or may not be 
true, but assume it is). 
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B2  The identification tree (7 pts) 

Draw the identification tree corresponding to your decision boundaries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
What is the classification of the new charge (triangle)?  
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Part C: Polar coordinates (10 pts) 
Lucy gets smart and decides to try a different space for each of the points. That is, she converts all 
of the points to polar coordinates. Sketch the data below.   You may assume that r value of each 
point is very close to a multiple of  0.25 and that the theta value of each point is very close to a 
multiple of pi/4. 

 
How many decision boundaries do we need in this case?  

 
 
 
 

Draw the resulting identification tree and sketch the decision boundary on the graph above. 
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Identification Trees Practice Problem 2
 
Part B1 (2 Points) 
 
Now, leaving nearest neighbors behind, you decide to try an identification-tree approach.  In the space 
below, you have two possible initial tests for the data. Calculate the average disorder for each test.  Your 
answer may contain log2 expressions, but no variables.  The graph is repeated below. 
 
Test A:  R  > 5: 

 
 
 
Test B:  W > 6: 
 
 
Part B2 (2 Points) 
 
Now, indicate which of the two tests is chosen first by  
the greedy algorithm for building identification trees. 
 
 
We include a copy of the graph below for your scratch work. 
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Part C: Identification Trees (4 Points) 
 
Now, assume R > 5 is the first test selected by the identification-tree builder (which may or may not be 
correct).  Then, draw in all the rest of the decision boundaries that would be placed (correctly) by the 
identification-tree builder: 
 

  


