
 1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.034 Artificial Intelligence, Fall 2011
Recitation 6, October 20

K-NN and ID Tree Notes, Cliff Notes Version Prof. Bob Berwick, 32D-728

0. Basics
The general goal of machine learning = make accurate predictions about unknown data after being trained on
known data.
There are two kinds of training: supervised, where the desired output is provided along with the input; and
unsupervised, where the desired output is not provided. We will focus on supervised learning methods
here.
Data comes in the form of examples, in the format: (x1, …, xn, y)
Here, x1, …, xn, are also known as features, inputs,∫ or dimensions, while y is the desired (or observed)
output or class label. A feature is a descriptor or property used to characterize the input for learning. We call
the space where feature values define the coordinate axes a feature space. The input vector for each
example defines a point in feature space
Both the x’s and the y’s can be discrete (taking on values from, say, {0, 1} or some fixed set of label names
or classes) or continuous.
In machine learning training we are given some (finite) set of (x1, …, xn, y) tuples. From this we output some
learned classification or prediction function.

Note that K-Nearest Neighbors (KNN) and ID Trees are both supervised, classification learning algorithms

In machine learning testing we are given just (x1, …, xn) and the goal is to predict y with high accuracy.
Training error is the classification error measured using training data to test.
Testing error is classification error on data not seen in the training phase.
Checking for over-fitting - Cross-validation: split sample data into N subsets, use each subset as test set,
the rest as training set; use average and standard deviation of performance on test sets to characterize
prediction performance.

1. k-Nearest Neighbors
 Training – Store all feature vectors in the training set, along with each class label.
 Prediction – Given a query feature vector, find “nearest” stored feature vector and return the associated

class.

 “Distance” = () () ()22
222

2
111 ... bnannbaba vvwvvwvvw −++−+−

 va1 is the value of feature 1 in vector a
 vb1 is the value of feature 1 in vector b
 …
 wn is the weight for feature n (see below for some common metrics used for distance and other points
about weighting)

1-NN: Given an unknown point, pick the closest 1 neighbor by some distance measure.
 Class of the unknown is the 1-nearest neighbor's label.

k-NN: Given an unknown, pick the k closest neighbors by some distance function.
 Class of unknown is the mode of the k-nearest neighbor's labels.
 k is usually an odd number to facilitate tie breaking.

Normalization? To separate values clustered close together, divide by the standard deviation
Relevant features? All features are used; to find relevant ones, have to cross-validate, dropping features out.
What’s the k? Can find best value using cross-validation
Voting for vectors? k-Nearest Neighbors votes on class for query feature vector; reduces sensitivity to noise

 2

k-NN fixes a set of decision boundaries for whether a point is/is not in a given class. (We will see that other
learning methods also fix decision boundaries).

How to draw 1-NN decision boundaries
Decision boundaries are defined as lines on which it is equally likely for a data point to be in any of the classes

1. Examine the region where you think decision boundaries should occur.
2. Find oppositely labeled points (+/-) and connect them, forming a line.
3. Draw perpendicular bisectors of these lines. (Use a pencil)
4. Extend and join all bisectors. Erase extraneously extended lines.
5. Remember to draw boundaries to the edge of the graph and indicate it with arrows! (a very common

mistake).
6. Your 1-NN boundaries generally should have sharp edges and corners (otherwise, you are doing something

wrong or drawing boundaries for a higher order k-NN).

Let’s practice drawing k–NN boundaries. Turn to the end of the handout where we show you how the ‘recipe’
works; then we have a practice problem for you to try.

Here are some standard distance metrics to use
Euclidean Distance (common)

Manhattan Distance (Block distance)
- Sum of distances in each dimension

Hamming Distance
- Sum of differences in each dimension

I(x,y) = 0 if identical, 1 if different.

Cosine Similarity
- Used in Text classification; words are dimensions;
documents are vectors of words; vector component is
1 if word i exists.

Note that it is also sometimes helpful to transform the data from one space to another. For example, if data
are scattered in ring-like patterns of classes, then a transformation to polar coordinates typically helps.
(Why?)

This is true of the practice problem we just did, as we will show in more detail below when using another
learning method, ID trees.

 3

Nearest neightbors, optional: How to weigh dimensions differently
In Euclidean distance all dimensions are treated the same. But in practice not all dimensions are equally
important or useful!

Example: Suppose we represent documents as vectors of words. Consider the task of classifying documents
related to Red Sox. If all words are equal, then the word the weighs the same as the word Sox. But almost
every English document contain the word the. But only sports related documents have the word Sox. So we
want the k-NN distance metrics to weight meaningful words like Sox more than functional words like the.

For text classification, a weight scheme used to make some dimensions (words) more important than others
is known as: TF-IDF

Here:
 tf: Words that occur frequently should be weighed more.
 idf: Words that occur in all the documents (functional-words like the, of etc) should be weighed less.

Using this weighing scheme with a distance metric, knn would produce better (more relevant)
classifications.

Another way to vary the importance of different dimensions is to use: Mahalanobis Distance

Here S is a covariance matrix. Dimensions that show more variance are weighted more heavily.

 4

2. Identification Trees (ID trees or decision trees)
Algorithm: Build a decision tree by greedily picking the “lowest disorder” feature tests. The best split for a
set of data minimizes the average disorder (more precisely, we want the split that decreases the average
disorder the most). We define these terms immediately below.
Training – Divide the feature space into boxes that have uniform labels. Split the space recursively along
each axis to define a tree. (Note this forms a set of boundaries that ‘tile’ the plane in terms of perpindiculars.)
NOTE: This algorithm is greedy (local hill climbing) so it does not guarantee that the tree will have the
minimum total disorder!

The notion of “disorder” is defined using entropy, H.
We define the entropy (disorder), following Shannon’s definition, of a discrete random variable X that has
the probability mass function p, as follows:

− p(xi)log2i=1

n∑ p(xi)
So for example, suppose a drawer contains 3 red socks and 7 green socks. Then the entropy of this collection
of socks in one drawer is (see the graph on the next page for a plot of this function where there are only two
classes and one ‘bin’):

 –3/10 log2 3/10+ –7/10 log2 7/10 = –0.3(-1.7369)–0.7(-0.5145)= +0.902570

Note that the disorder here is at a maximum when the two kinds of socks are equally distributed; and a
minimum when either color is absent (uniform color), so the probability of one possibility is 0, and –plog2 p
of the other color is 1 x 0=0, so H is 0.

For ID trees, we will need to find the weighted average of disorder across a set of classes or ‘bins’. The
average entropy or disorder for a split = Entropy for each region (bin) times the fraction of the total data
points that are in that region (bin) – a weighted average of the disorder, weighted by the # of data points in
each class or bin.

Average disorder = ⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−×⎟⎟⎠

⎞
⎜⎜⎝

⎛ ∑∑
c b

bc

b

bc

b t

b

n
n

n
n

n
n

2log

nb is the total number of samples in branch b
nt is the total number of samples in all branches
nbc is the total of samples in branch b of class c

Let’s practice calculating this. A simple example with 3 bins (classes), and 2 possibilities, + or O:

+ O O O + + O + + O O O + + O + + + + +

We calculate the entropy H in each of the three classes:
Class 1: 3 +, 4 O, 8 total, so + probability is 3/8 = 0.375, so from our 2nd graph: H1= 0.95
Class 2: 3 +, 2 O, 6 total, so + probability is 3/6 = ½, so H2= ½ + ½ = 1.0
Class 3: 7 +, 1 O, 8 total, so + probability is 7/8 =
Now we compute the weighted average of these three H values. There are 8+6+8 objects in all, or 22, so:

8/22(H1)+6/22(H2)+8/22(H3) = 0.36(0.95)+0.18(1)+ 0.36(0.54)= 0.34+0.18+0.19=0.71

This is the average disorder of this particular split into 3 classes. This is the number used to ‘drive’ the
algorithm, which attempts to find the split that achieves the lowest average disorder.

 5

See also the table of binary entropy values a few pages later on.

 6

Example formulas.
The disorder equation for a test with two branches, left and right, (l, r), with each branch having 2 (binary)
classes or bins.
Let a = count of class 1 on the left side; b = count of class 2 on the left side;
Let c = count of class 1 on the right side; d = count of class 2 on the right side
a + b = l c + d = r; r+l= T

Disorder=
l
T

−
a
l
log2

a
l

⎡
⎣⎢

⎤
⎦⎥
+ −

b
l
log2

b
l

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
+
r
T

−
c
r
log2

c
r

⎡
⎣⎢

⎤
⎦⎥
+ −

d
r
log2

d
r

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

For a test with 3 branches, and 2 binary class outputs (this is the formula for the example we explicitly did
earlier):

Disorder =
b1
T
H a

b1

⎛
⎝⎜

⎞
⎠⎟
+
b2
T
H c

b2

⎛
⎝⎜

⎞
⎠⎟
+
b3
T
H e

b3

⎛
⎝⎜

⎞
⎠⎟

a = count of class 1 on branch 1 b = count of class 2 on branch 1
c = count of class 1 on branch 2 d = count of class 2 on branch 2
e = count of class 1 on branch 3 f = count of class 2 in branch 3
a+b = b1 c + d = b2 e + f = b3

Homogeneous Partitioning Trick
A time-saving heuristic shortcut to picking the lowest disorder test.
1. Pick tests that break the space into a homogeneous portion and a non-homogeneous portion
2. Pick the test that partitions out the largest homogeneous portion; that test will most likely have the lowest
disorder.
Caution! when the homogeneous portions are about the same size, you should compute the full disorder
value. This is where this shortcut might break down!

ID trees and Prediction – Test features of a query feature vector according to the identification tree
generated during training, return the class at the leaf of the tree.
Relevant features? Irrelevant features are ignored because have large disorders.
Whose Razor? Occam’s: The world is inherently simple. Choose the smallest consistent tree.
Why greedy? Finding the simplest tree is computationally intractable; so we use a greedy search using
minimum average disorder as a heuristic.

 7

Table of common Binary Entropy values

Note: because H(x) is a symmetric function, i.e. H(1/3) = H(2/3), fractions > 1/2 are omitted.
/3 to /9 /10 to /13
numerator denominator fraction H(fraction)
1 3 0.33 0.92
2 3 0.67 0.92
1 4 0.25 0.81
2 4 0.50 1.00
1 5 0.20 0.72
2 5 0.40 0.97
3 5 0.60 0.97
1 6 0.17 0.65
2 6 0.33 0.92
3 6 0.50 1.00
1 7 0.14 0.59
2 7 0.29 0.86
3 7 0.43 0.99
1 8 0.13 0.54
2 8 0.25 0.81
3 8 0.38 0.95
4 8 0.50 1.00
1 9 0.11 0.50
2 9 0.22 0.76
3 9 0.33 0.92
4 9 0.44 0.99

numerator denominator fraction H(fraction)
1 10 0.10 0.47
2 10 0.20 0.72
3 10 0.30 0.88
4 10 0.40 0.97
1 11 0.09 0.44
2 11 0.18 0.68
3 11 0.27 0.85
4 11 0.36 0.95
5 11 0.45 0.99
1 12 0.08 0.41
2 12 0.17 0.65
3 12 0.25 0.81
5 12 0.42 0.98
1 13 0.08 0.39
2 13 0.15 0.62
3 13 0.23 0.78
4 13 0.31 0.89
5 13 0.38 0.96
6 13 0.46 1.00

Try some sample ‘cuts’ in these two figures….which is the best single cut(s) in each? Why? And the next
cut?

6.034 Recitation October 20: Nearest Neighbors, Drawing decision boundaries

Boundary lines are formed by the intersection of perpendicular bisectors of every pair of points.
Using pairs of closest points in different classes gives a good enough approximation. (To be
absolutely sure about the boundaries, one would draw perpendicular bisectors between each pair of
neighboring points to create a region for each point, then consolidate regions belonging to the same
class, i.e., remove the boundaries separating points in the same class. This technique is unnecessary
for our purposes.)

Construct lines
between closest
pairs of points in
different classes.

Draw perpendicular
bisectors.

End bisectors at
intersections; extend
beyond axes (to
infinity).

10/20/11 Nearest Neighbors Practice Problem 1
Lucy has been working hard for the credit card companies to detect fraud. They have asked her to
analyze a number of classification methods to determine which one is best suited to their problem.
The two quantities that they have provided her are the change in longitude from the purchase
location to the registered address and the amount that the purchase is over or under the average
purchase that the customer usually makes.

Part A: Nearest Neighbors (15 pts)
Lucy decides to use nearest neighbors to solve this problem and plots the fraudulent / non-
fraudulent data. Squares are fraudulent and circles are non-fraudulent. Sketch the resulting decision
boundary on the figure below.

It is the end of the month and Lucy’s boss comes over with new data hot off the presses (the
triangle). He wants Lucy to analyze whether or not the new charge is fraudulent.

What is the nearest neighbor classification of the new charge, fraudulent or non-fraudulent?

She’s not too sure about this classification and decides to rerun it using k-nearest neighbors for
k=3 and then for k=5. Is the charge fraudulent for these values of k?

 K= 3:

 K= 5:

11

 12

6.034 Recitation Thursday, October 20, 2011

Practice Problem 2: k-Nearest Neighbors

The 6.034 staff has decided to launch a search for the newest AI superstar by hosting a television show
that will make one aspiring student an MIT Idol. The staff has judged two criteria important in choosing
successful candidates: work ethic (W) and raw talent (R). The staff will classify candidates into either
potential superstar (black dot) or normal student (open circle) using a nearest-neighbors classifier.

On the graph below, draw the decision boundaries that a 1-nearest-neighbor classifier would find
in the R-W plane.

Identification trees Problem 1 (same credit card problem as k-NN above)

B1 The boundaries (18 pts)

Lucy now decides that she’ll try to use identification trees on the data. There are three likely
candidates for splitting the data: x=0.0, x=-1.01 and x=1.01. Note that the -1.01 and 1.01 values lie
half-way between a square and a circle with nearby x values. Compute the average disorder for the
decision boundary x=1.01. Your answer may contain logarithms.

Compute the average disorder for the decision boundary x=0.0. Again, your answer may

contain logarithms.

Which of the two decision boundaries, x= 0.0 and x=1.01, is added first?

Sketch all of the decision boundaries on the figure below. Assume that x= 0.0 and x=1.01, in the
order you determined above, are the first two decision boundaries selected (this may or may not be
true, but assume it is).

 13

B2 The identification tree (7 pts)

Draw the identification tree corresponding to your decision boundaries.

What is the classification of the new charge (triangle)?

 14

Part C: Polar coordinates (10 pts)
Lucy gets smart and decides to try a different space for each of the points. That is, she converts all
of the points to polar coordinates. Sketch the data below. You may assume that r value of each
point is very close to a multiple of 0.25 and that the theta value of each point is very close to a
multiple of pi/4.

How many decision boundaries do we need in this case?

Draw the resulting identification tree and sketch the decision boundary on the graph above.

 15

 16

Identification Trees Practice Problem 2

Part B1 (2 Points)

Now, leaving nearest neighbors behind, you decide to try an identification-tree approach. In the space
below, you have two possible initial tests for the data. Calculate the average disorder for each test. Your
answer may contain log2 expressions, but no variables. The graph is repeated below.

Test A: R > 5:

Test B: W > 6:

Part B2 (2 Points)

Now, indicate which of the two tests is chosen first by
the greedy algorithm for building identification trees.

We include a copy of the graph below for your scratch work.

 17

Part C: Identification Trees (4 Points)

Now, assume R > 5 is the first test selected by the identification-tree builder (which may or may not be
correct). Then, draw in all the rest of the decision boundaries that would be placed (correctly) by the
identification-tree builder:

