
 1
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science
6.034 Artificial Intelligence, Fall 2011

Recitation 8, November 3 Corrected Version & (most) solutions
Neural networks II Prof. Bob Berwick, 32D-728
0. Introduction: the summary so far (and solutions from last time)
Summary of neural network update rules:
To update the weights in a neural network, we use gradient ascent of a performance function P by comparing
what a network outputs given a sample data point and given the network’s current weights, via forward
propagation. We compare the network’s output value against the desired value in terms of the partial derivative
of P = –1/2(d–o)2 with respect to particular weights wi. This is called backpropagation. Recall that the first step
is to find the derivative of P with respect to the output, which turns out to be: (d–o).
The general formula for the change in weights is:

Δw ∝
∂P
∂w

 so ′w = w +α ×
∂P
∂w

 where α is a rate constant (also r in the literature & quizzes)

The value of alpha (aka r) is also the “step size” in the hill-climbing done by gradient ascent, using the
performance fn.
For the final layer in a neural network, whose output from forward propagation is of and where the desired output
value is d, the required change in weight value for a (single) final weight is:

1. Δwr = Δwf =α ×δ f × i f where δ f = of (1− of)× (d − of)
For the previous layer in a neural network (just the rightmost layer if a single neuron), the required update
equation is:
2. Δwl =α × ol (1− ol)×wr ×δ f × il

Example 1. Last time we computed the weight updates for a single-layer neural network with 6 inputs and 6
weights. Each partial derivative in the figure below corresponds to a different part of the network, with their
product yielding the derivative of P with respect to the weights w, where the desired output was 1, and the
learning rate alpha was (arbitrarily) set to 100:

 ∂pr

∂w
 ∂o

∂pr
 ∂P

∂o

Step 1: Forward Propagation. Calculate the output o given the input values shown. Useful data point:
sigmoid(2)= 0.9
Answer: –1 × w0 + ___1__ × w1 ___1___ × w2 + __1___ × w3 + __0.5_× w4 + ___0__ × w5 = pr= 2
Sigmoid (pr) = of = ______0.9__________

 2
Step 2: Backpropagation to find delta for final, output layer.

δ f =
∂P
∂pr

=
∂P
∂o

∂o
∂pr

= (d − of) × [of (1− of)]

∂P
∂w

=
∂P
∂o

∂o
∂pr

∂pr
∂w

= (d − of) × [of (1− of)]× i f = δ f × i ff

Δwf =α × i f ×δ f (for each input line to the neuron, i)
′wi = wi + Δwf (for each input line to the neuron, i)

NEW WEIGHT ORIGINALWEIGHT + RATE × δ × INPUT = NEW WT
w′ w α (d-o)(o)(1-o) if

w0
′ = 0 100 0.009 –1 –0.9

w1
′ = 2 100 0.009 1 2.9

w2
′ = 2 100 0.009 1 2.9

w3
′ = –1 100 0.009 1 –0.1

w4
′ = –2 100 0.009 0.5 –1.55

w5
′ = 1 100 0.009 0 1

Note how weights that have an input of 0 to them can’t affect the performance, so they remain unchanged.
So, do these new weights get us closer to the desired output? If we run forward propagation again we can find
out: -1 × 0.9 + 1 × 2.9 + 1 × 2.9 + 1 × –0.1 + 0.5 × –1.55 + 0 × 1 = 6.65; sigmoid(6.65) = 0. 99870765

Example 2. Last time, we also computed the value for the weight change for the final, output neuron of the
simple two-neuron net below. We initially have il=1; both weights wl and wr = 0; and the desired output is 1. We
will finish up this problem now.
For completeness, and to cement our understanding, let’s see how the various terms in the partials are arrayed
over this two-neuron diagram, pushing back from the output or, so you can see why it is called backpropagation.
Make sure you understand where each of the five terms comes from. Multiplied together, they give the partial
derivative of the performance function P with respect to wl.

∂pl
∂wl

 ∂ol
∂pl

 ∂pr
∂ol

 ∂or
∂pr

 ∂P
∂or

il ol (1− ol) wr or (1− or) (d − or)
left left right right output
weight sigmoid weight sigmoid deriv
deriv deriv deriv deriv

This is to find the partial of the performance function P with respect to the left right, wl. Remember that to find
the corresponding partial for the final output layer we computed something a bit different: the partial of pr with
respect to ol is replaced with the partial of pr with respect to wr (so finding the partial of P with respect to wr.)
But this partial is just the derivative of ir × wr with respect to wr, which is simply ir. Note how if we decided to use
a different threshold function other than a sigmoid, the only two things we would have to change are the two

3

x Sigmoid

Wl

plil ol
x Sigmoid

Wr

pr orir

Left neuron Right neuron

Note that the subscripts indicate layer. Thus, il , wl , pl , and ol are the input, weight, product, and

output associated with the neuron on the left while ir , wr , pr , and or are the input, weight, product,

and output associated with the neuron on the right. Of course, ol = ir .

Suppose that the output of the right neuron, or , is the value that determines performance P. To

compute the partial derivative of P with respect to the weight in the right neuron, wr , you need the
chain rule, which allows you to compute partial derivatives of one variable with respect to another
in terms of an intermediate variable. In particular, for wr , you have the following, taking or to be
the intermediate variable:

∂P
∂wr

=
∂P
∂or

× ∂or

∂wr

Now, you can repeat, using the chain-rule to turn ∂or
∂wr

into ∂or
∂pr

× ∂pr
∂wr

:

∂P
∂wr

=
∂P
∂or

× ∂or

∂pr
× ∂pr

∂wr

Conveniently, you have seen two of the derivatives already, and the third, ∂pr
∂wr

= ∂(wr×ol)
∂wr

, is easy to
compute:

∂P
∂wr

= [(d − or)] × [or(1 − or)] × [ir]

Repeating the analysis for wl yields the following. Each line is the same as the previously, except
that one more partial derivative is expanded using the chain rule:

∂P
∂wl

=
∂P
∂or

× ∂or

∂wl

=
∂P
∂or

× ∂or

∂pr
× ∂pr

∂wl

=
∂P
∂or

× ∂or

∂pr
× ∂pr

∂ol
× ∂ol

∂wl

=
∂P
∂or

× ∂or

∂pr
× ∂pr

∂ol
× ∂ol

∂pl
× ∂pl

∂wl

=[(d − or)] × [or(1 − or)] × [wr] × [ol(1 − ol)] × [il]

 3
partial derivatives, the right and the left sigmoid derivatives with respect to pr and pl, respectively. For example,
if we changed the sigmoid threshold from 1/(1+e–x) to, say, x2, then the derivatives would change from, e.g.,
or(1–or) (the derivative of the sigmoid function with respect to its input), to just 2or (and the same for the left
threshold derivative).

For this example, assume all initial weights are 0 (it is actually a bad idea to set all initial weights the same for
neural nets; why?). Assume a sample input of il= 1, and that the desired output value d is 1.0. Assume a learning
rate of 8.0. (Useful data point: sigmoid(0) = 0.5) Let’s run one step of backpropagation on this and see what’s
different about this case. First, as before, we must carry out forward propagation: compute the inputs and outputs
for each node.

Step 1: Forward Propagation. OK, you should know the drill by now. First compute the outputs z at each
node:
p1 = wli1 = 0 × 1 = 0 So ol (= ir) = sigmoid(0) = 0.5

pr = wr ir = 0 × 0.5 = 0 So or = sigmoid(0) = 0.5

Step 2: Calculate the δ for the output, final layer, δ f (i.e., the neuron on the right, for use in changing wr)

Recall the formula for δf is: or × (1–or) × (d– or)= 0.5 × (1–0.5) × (1–0.5) = 0.125 .
Recall that d = 1.0; we have just computed or.
So, the change in the right-most weight wf is: αf × ir × δf = 8.0 × 0.5 × 0.125 = 0.5

Step 3: Calculate δl for the hidden neuron on the left, recursively using the delta from the previous layer:
δ l = ol (1− ol)×wr ×δ f = 0.5(1–0.5) ×0 × 0.125 = 0
So the weight change for the left neuron at the first iteration of back propagation is 0

Thus the two new weights are:
wf ′= 0 + 0.5 = 0.5
wl ′ = 0 + 0 = 0

Let’s see how much closer this has gotten us to the desired output value of 1.0. We do this by another round of
forward propagation (and then typically, we would do back-propagation again to get us even closer, many
thousands of times.) Your turn now…. (See the tear-off page on the back to estimate the sigmoid to 2 decimal
places, or better, user a calculator or python on your laptop…)

Next iteration, forward propagation:
p1 = wli1 = 0 × 1 = 0 So ol (=ir) = sigmoid(0) = 0.5 .

pr = wrir = 0.5 × 0.5 = 0.25 So or = of = sigmoid(0.25) = 0.56218 .
So, we have definitely gotten a bit closer to our output goal of 1.0.

Next iteration, back-propagation:
Now you try it:
δf = of × (1–of) × (d – of) = 0.56218 ×(1– 0.56218) ×(1– 0.56218) = 0.10776 .

δl = ol × (1–ol) × wr × δf = 0.5 ×(1– 0.5) × 0.5 × 0.10776 = 0.01347 .

Δwf = α × if × δf = 8.0 × 0.5 × 0.10776 = 0.43104

Δwl = α × il × δl = 8.0 × 1.0 × 0.0134 = 0.1072

 4

wf
′ = wf + Δwf = 0.5 + 0.43104 = 0.943104

wl
′ = wl + Δwl = 0 + 0.1072 = 0.1072

Do the new weights get us closer to the goal? Calculate this by forward propagation again:

pl= wli1 = 1 × 0.1072 ; ol (= ir) = sigmoid(0.1072) = 0.52677

pr= wrir = 0.943104 × 0.52677 = 0.4968 ; or = sigmoid(0.4968) = 0.62171

Example 3. What multilayer neural networks can learn that single layer networks cannot learn.
Why did people invent multi-layer neural networks? Consider a classification problem such as the one depicted
below, which represents the predicate or the ‘concept’ of excusive-OR (XOR), i.e., the value of this function is 1
if either of the two inputs is 1; and the value of this function is 0 if both inputs are 0 or both inputs are 1. The line
A goes through the points (0, 3/2) and (3/2, 0); while the line B goes through the points (0, 1/2), (1/2, 0). The
‘plus’ signs are at (0,1) and (1, 0); the minus signs at (0,0) and (1,1).

Suppose we tried to find the weights to a single layer neural network to ‘solve’ this classification problem. Then
the general formula for this network would be, output = w1x + w2y + c. But what weights would work? Do you
see that this kind of equation can only define a single line? Thus, it says that we must classify the + and – regions
in the graph above into regions that are all + (positive) and all – (negative), by making a single cut through the
plane. Can this be done? Try it – why can’t it be done? Answer: you cannot do it, because a perceptron can
only define a single line ‘cut’ through the plane, and this region of + is defined by two lines.

Question: Can a perceptron encode function |x–y| < epsilon, for some positive epsilon? Why or why not?
Answer: No, again because the absolute value function requires two cuts through the plane.

However, if we are allowed two network layers, then we can formulate a set of weights that does the job. Let’s
see how, by considering the network below, and then finding the weights that do the job. (This was a sample quiz
problem previously.)

 5

Step 1. First, think of input-level neurons (neurons A and B) as defining regions (that divide positive data points
from negative data points) in the X, Y graph. These regions should be depicted as linear boundary lines with
arrows pointing towards the positive data points. Next, think of hidden level neural units (neuron C) as some
logical operator (a linearly separable operator) that combines those regions defined by the input level units.
(We will see later on a few more examples of this sort to show you how multi-layer networks can ‘carve up’
regions of the plane in this way.)

So in this case: units A, and B represent the diagonal boundaries (with arrows) on the graph (definition two
distinct ways of separating the space). Unit C represents a logical AND that intersects the two regions to create
the bounded region in the middle.

Step 2. Write the line equations for the regions you defined in the graph.

A) The boundary line equation for the region defined by line A:

y < -1 × x + 3/2

B) The boundary line equation for the region defined by line B:

y > -1 × x + 1/2

Step 3. Rewrite the line equations into the form: ax + by > c, where a, b, and c are integers:

A) y < –1 × x + 3/2
 x + y < 3/2
 2x + 2y < 3

B) y > -1 x + 1/2
 x + y > 1/2
 2x + 2y > 1

 6
Now note that the sum of the weights times the inputs for each unit can also be written in a similar form. (We
will call this summed product of weights times the inputs for a neuron its “z” value).

For Unit A: z =
 WXA x+ WYA y + WA(–1) > 0
 WXA x + WYA y > WA

For Unit B: z =
 WXB x + WYB y + WB(–1) > 0
 WXB x + WYB y > WB

Why do we set WXA x + WYA y + WA(–1) > 0 and not < 0? Look at the graph on the tear-off sheet!
When z = WXA x + WYA Y + WA(–1) > 0 , then sigmoid(z >0), and z grows and approaches 1, which
corresponds to the positive points/
When z = WXA x + WYA Y + WA(–1) < 0, then sigmoid(z <0), z decreases and approaches 0, which
corresponds to the negative points.
Thus, when expressed as > 0 the region is defined as pointing towards the positive points.
But when expressed as < 0, the region is defined as pointing towards the negative points.
We want the defined region to point to the positive points. So, we must adjust the equation for line (A)
so that it has the inequality in the form > (rather than as <). We can do this by multiplying through by a
–1, which will reverse the inequality, so the equation for line A becomes:
–2x–2y > –3
 Now we are ready for the next step.

Step 5. Easy! Just read off the weights by correspondence.
 –2 x + - 2 y > 3 line A’s inequality
 WXA x + WYA y > WA z equation for unit A. Therefore, WXA = –2 WYA = –2 WA = –3

 2 x + 2 y > 1 line B’s inequality
 WXB x + WYB y > WB z equation for unit B. Therefore, WXB = 2 WYB = 2 WB = 1

Step 6. Solve the logic in the second neuron layer
The equation for the second layer unit C is WAC(output from A) + WBC(output from B) – WC < or > 0 (where we
pick the inequality to satisfy the sigmoid output description mentioned above – if we want the output to be 0 from
the logic unit, then we want the sigmoid to go negative, so we want < 0; if we want he output to be 1, then we
want the sigmoid to go positive, so we want > 0.)
We now want to compute (A AND B), for the next layer. (Remember, the final region we want is the intersection
of the regions defined by unit (line) A, and unit (line) B. So we build a Truth table for And and solve for the
constraints. (Note that we are not building a truth table for XOR – we want And.) So we want the output from C
to be true (1) iff the outputs from units A and B are both 1, as below.

A B desired output Equations Simplified
0 0 0 –WC < 0 WC > 0
0 1 0 WBC – WC < 0 WBC < WC
1 0 0 WAC – WC < 0 WAC < WC
1 1 1 WAC + WBC – WC > 0 WAC + WBC > WC

We notice the symmetry in WBC and WAC, so we can make a guess that they have the same value:

WBC = 2 and WAC = 2

Then the inequalities in the table above condense down to the following:

 7
 WC > 0 WC > 2 (twice) WC < 2+2 = 4

Therefore, 2 < WC < 4. Let’s make life easy and pick WC = 3. This gives us one acceptable solution:
WBC = 2 WAC = 2 WC = 3

Of course, there are many solutions. The following solution also works, because it still obeys the inequalities and
the constraints in the table:

WBC = 109 WAC = 109 WC = 110

Quizzes will always ask for the smallest integer solutions.
This particular problem also illustrates how to combine networks using a logic gate. Thus, to compute more
complex regions, we need more neurons either at one level or at the output level. But first, to cement our
understanding of this problem, let’s look at a related quiz problem, from quiz 3, 2009.

Question: which of the following sets of weights will correctly separate the dots from the diamonds? (Think
about what cuts the various weights make at the left neuron….)

Weight set A:
 w11 w12 w1T w21 w22 w2T w21 w22 w2T
 –2 –2 –1 3 3 –1.5 128 128 173

Weight set B:
 w11 w12 w1T w21 w22 w2T w21 w22 w2T
 2 –1 1 2 -2 1 100 100 50

Why does weight set A work but not weight set B?
Answer: weight set A defines two negatively sloping lines, similar to the XOR case, which are required to
separate the dots from the diamonds.
Weight set B has as its first set of 3 weight a line that has positive slope – this is the wrong slope for that
‘cut’. (Same for the next weight set). We need the weights to be both negative or both positive, so that the
‘cuts’ slope downwards, as required to separate the dot region from the diamonds.

Example 4. Some other examples of carving up the x-y plane & the associated multi-layer networks
Now let’s consider some other patterns in the x-y (or x1, x2) plane and what sort of qualitative network might be
required to encode them. (This was an exam question in 2008.)

First, let’s give the schematic pictures for (i) a perceptron; and then (ii) the simplest 2-layer neural net we have
just seen – note that we have removed all the clutter of the w’s, etc.:

!"#$%&%'()%*+,-$./

!"#$%&'(")&'(*$$+%,-$&%$.*/0&%$'1,*23&/%-&'($&'*/"%"%4&-/'/&,%&'($&*"4('&

56&7%-"8/'$&1("8(&,9&'($&9,00,1"%4&)$')&,9&1$"4(')&1"00&)$:/*/'$&'($&-,')&9*,;&'($&-"/;,%-)&<=&0,#01,-2%

'($"*&0$''$*)6&&>?@AB&;,*$&'(/%&,%$&;/=&1,*2C

D6&E,*&F/'&0$/)'G&,%$&,9&'($&)$')&,9&1$"4(')&=,.&8(,)$&/<,#$3&1*"'$&'($&)";:0$)'&;/'($;/'"8/0&

$:$)$%'/'",%&9,*&"'&.)"%4&H&+&I&J3&"%$K./0"'"$)3&/%-J,*&<,,0$/%&,:$*/'",%)6

L6&M($%&'*/"%"%4&'($&'(*$$+%,-$&%$.*/0&%$'1,*2&/'&'($&',:&,9&'($&:/4$&.)"%4&</82+:*,:/4/'",%3&"9&'($&

8.**$%'&1$"4(')&/*$&'($&,%$)&4"#$%&"%&8(,"8$&N3&'($%3&9,*&'($&'*/"%"%4&$O/;:0$&OPQ&=PQ3&"9&=IP53&1(/'&")&

!5R&&&S$$&'($&'$/*+,99&)($$'&9,*&&%,'$)&,%&</82+:*,:/4/'",%6&&T,.&8/%&0$/#$&=,.*&),0.'",%&$O:*$))$-&/)&/&

:*,-.8'3&/%-&"'&;/=&($0:&.)&/))"4%&:/*'"/0&8*$-"'6

!

"

#
$$

#
$%

#
%$

#
%%

#
&%

#
&$

#
$'

($

($

($#
&'

#
%'

#$$ #$% #$' #%$ #%% #%' #&$ #&% #&'

) & % $ * + (% ($,, ($,, ($+,

- (% (% ($ & & ($.+ $%/ $%/ $0&

1 $ $,.+ $ $ (,.+ 20 20 $%/

3 * * % 4 4 (& 24 (2+ (+%

5 % (% $ % (% $ $,, $,, +,

6 * * % 4 4 (& ($,$ $,% $*/

M("8(&0"%$R ;/'($;/'"8/0&$O:*$))",%B

7

 8
(A) Perceptron: (B) Simplest 2-layer neural net:

Here is a basic picture of the kind of classification regions a perceptron (A) can describe: any single cut, at any
angle:

4.1 Question: Can a 2-layer network (B) also describe such a classification region? Why or why not?
Answer: yes, of course – a more powerful network can always do something that a less powerful net can do.

4.2 Now consider these two sorts of classification regions.
Question: Can a perceptron (net A) describe these kinds of regions? Can the 2-layer network (B) also
describe these kinds of regions? Why or why not?

Answer: perceptrons can’t do these – they require two cuts. A perceptron can only do one. The two-layer
network for XOR can be modified with different weights to classify both of these figures above. A
simplified two-layer network where unit A is fed just from X1 and unit B is fed just from X2 can describe
the region on the RIGHT side (because unit A can describe any single vertical cut, X1= some constant; and
unit B can describe any single horizontal cut, X2= some constant. Then the logic unit C can combine the
two regions, as before. (See a picture of this net below, labeled “D”.) But this kind of simplified network
cannot describe the region on the left, because this requires different two horizontal cuts using the input X2,
so we would need a net with A and B units where the X2 input connects to both units A and B (the X1 input
is irrelevant and can be set to 0).

4.3 Now let’s hone our intuitions by making the region more complex, and by considering different neural
networks.
Question: The 2-layer network (B) cannot describe this kind of region. Why not?

So, we must complicate our neural network to capture this kind of more complex region.
Question: Please explain why the following neural network can successfully describe the region just above.
(Think about how we classified the region in our worked-out example earlier.)

!"#$%&%'()%*+,-$./

!"#$%&'(#)%&*)+##')",&('('-)*./#).,01+,2%'#0,&1)'#"*2)+0")3&*)*.)+0*4)5#1#+,&"('-)"%#)
#1#5"(.'),#*01"*)1&*")3##6)"%&")*%#)7.,-.")3%(5%).'#)3&*)3%(5%8

9%(*)$&-#)5.'"&('*):(&-,&/*).7)*(;)'#0,&1)'#"*2)1&+#1#:)<)"%,.0-%)=8)9%#)'#;")$&-#)*%.3*)

*(;)51&**(7(#,)70'5"(.'*8)>#"#,/('#)3%(5%)51&**(7(#,)5&/#)7,./)3%(5%)'#0,&1)'#"8

9%#)*(;)&'*3#,*)*%.01:)&11)+#)0'(?0#2)+0")4.0)5&')-(@#),#&*.'&+1#)'.'A0'(?0#)&'*3#,*)7.,)

$&,"(&1)5,#:("8

BC

!"#$%&%'()%*+,-$./

!"#$%&'(#)%&*)+##')",&('('-)*./#).,01+,2%'#0,&1)'#"*2)+0")3&*)*.)+0*4)5#1#+,&"('-)"%#)
#1#5"(.'),#*01"*)1&*")3##6)"%&")*%#)7.,-.")3%(5%).'#)3&*)3%(5%8

9%(*)$&-#)5.'"&('*):(&-,&/*).7)*(;)'#0,&1)'#"*2)1&+#1#:)<)"%,.0-%)=8)9%#)'#;")$&-#)*%.3*)

*(;)51&**(7(#,)70'5"(.'*8)>#"#,/('#)3%(5%)51&**(7(#,)5&/#)7,./)3%(5%)'#0,&1)'#"8

9%#)*(;)&'*3#,*)*%.01:)&11)+#)0'(?0#2)+0")4.0)5&')-(@#),#&*.'&+1#)'.'A0'(?0#)&'*3#,*)7.,)

$&,"(&1)5,#:("8

BC

!"

!"

!"

!"

 9
Answer: this region requires three separate cuts, not just two. So we need three basic input units, and
then a second logic unit (as before) to combine their results via AND, like this one:

BUT: This network cannot successfully describe the region below. Why not? (Think about this, and for
the next recitation, try to come up with the reason, and a modification, that is, a more complex neural
network, that can describe this region.)

4.4 Finally, let us consider a simpler two layer neural network, where the inputs to the top, leftmost hidden neuron
receives input only from x1 , and the bottom, leftmost hidden neuron receives inputs only from x2. So the network
looks like the following. Can you intuit how this will restrict what regions the network can describe?

Question: Can this (restricted) neural network classify the region below? Why or why not?

Can network (D) describe this region that we already saw above? Why or why not? (We answered this
already above.)

Finally, for next time, you might want to think about why network (D) cannot describe this region that we saw
before (while we have already discussed what the usual 2-layer network (B) can do in this case) (We also
answered this question already, above).

!"#$%&%'()%*+,-$./

!"#$%&'(#)%&*)+##')",&('('-)*./#).,01+,2%'#0,&1)'#"*2)+0")3&*)*.)+0*4)5#1#+,&"('-)"%#)
#1#5"(.'),#*01"*)1&*")3##6)"%&")*%#)7.,-.")3%(5%).'#)3&*)3%(5%8

9%(*)$&-#)5.'"&('*):(&-,&/*).7)*(;)'#0,&1)'#"*2)1&+#1#:)<)"%,.0-%)=8)9%#)'#;")$&-#)*%.3*)

*(;)51&**(7(#,)70'5"(.'*8)>#"#,/('#)3%(5%)51&**(7(#,)5&/#)7,./)3%(5%)'#0,&1)'#"8

9%#)*(;)&'*3#,*)*%.01:)&11)+#)0'(?0#2)+0")4.0)5&')-(@#),#&*.'&+1#)'.'A0'(?0#)&'*3#,*)7.,)

$&,"(&1)5,#:("8

BC

!"

!"#$%&%'()%*+,-$./

!"#$%&'(#)%&*)+##')",&('('-)*./#).,01+,2%'#0,&1)'#"*2)+0")3&*)*.)+0*4)5#1#+,&"('-)"%#)
#1#5"(.'),#*01"*)1&*")3##6)"%&")*%#)7.,-.")3%(5%).'#)3&*)3%(5%8

9%(*)$&-#)5.'"&('*):(&-,&/*).7)*(;)'#0,&1)'#"*2)1&+#1#:)<)"%,.0-%)=8)9%#)'#;")$&-#)*%.3*)

*(;)51&**(7(#,)70'5"(.'*8)>#"#,/('#)3%(5%)51&**(7(#,)5&/#)7,./)3%(5%)'#0,&1)'#"8

9%#)*(;)&'*3#,*)*%.01:)&11)+#)0'(?0#2)+0")4.0)5&')-(@#),#&*.'&+1#)'.'A0'(?0#)&'*3#,*)7.,)

$&,"(&1)5,#:("8

BC

!"

!"

 10

!"

 11

Sigmoid function y = 1/(1–e–x)

!"#$%&#'(&)*+,-)#+-#./0*#1#%/2&#/)3&4#5,0#),6(*+,-)#()+-7#/#*%0&)%,64#4&8+)+,-#5(-8*+,-"##9,#*%+0)*#

0,(-4#,5#*0/+-+-7#5,0#1:;#<+*%#/#!"#$%"&8+)+,-#5(-8*+,-"#=&*#*%&/0-+-7#0/*&>?"

$%&#)+7@,+4#4&8+)+,-#5(-8*+,-A#B#>#?CD?E&FGHA

I"#J%+8%#,5#*%,66,<+-7#+)#*0(&#/K,(*#/#.&08&.*0,-#<%&-#<&#()&#/#)+7@,+4#+-)*&/4#,5#/#*%0&)%,64L

1"#$%&#.&08&.*0,-#8/-#6&/0-#MNO

;"#$%&#.&08&.*0,-#8/-#-,#6,-7&0#6&/0-#/66#6+-&/0#86/))+5+8/*+,-#K,(-4/0+&)

P"#$%&#.&08&.*0,-#<+66#6&/0-#1:;#+-#5&<&0#*0/+-+-7#)*&.)

9"#$%&#.&08&.*0,-#<+66#6&/0-#1:;#+-#@,0&#*0/+-+-7#)*&.)

Q"#R,-&#,5#*%&)&#+)#*0(&

! " # $ % %&

' ' () ' '))

') ())

) ' () '

)) ())

*
!

*
"

*
#

