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SVMs & Boosting                                          Prof. Bob Berwick, 32D-728 
 
Part I.  SVMs: the Basic Ideas 
Another method for classifying unseen data that avoids over-fitting. We train a system on a set 
of known (x, y) points, with known output + or –,  then give it an unknown sample (as with 
neural nets, or k-Nearest Neighbors, or ID-trees…) 
We are trying to find the decision boundary that maximizes the “margin” m or the “width of 
the street” separating the positive from the negative training data points (the “positive gutter” 
plus the “negative gutter”).  Referring to Winston’s notes, the equation for the width of the 
margin (aka the “street” or “road”) is: 

 
m =

2
w

 where w = wi
2

i∑   (i.e., the length of w)  

Thus to maximize the street width, we must minimize  
w , subject to the constraint that the 

decision boundary classifies the training points correctly as either positive or negative, i.e.: 

 yi (
wi
xi + b) ≥1 

The resulting Lagrange multiplier equation L that will solve this optimization problem is the 
following: 

 
L =

1
2
w 2 − α ii∑ (yi (

wi
xi + b)−1)  

 
Solving the optimization problem above, we take partials with respect to b and then w (as 
shown below) to solve for w, b, and the values of alpha, αi, parameters that determine a 
unique maximal margin (road/street) boundary line solution.  On this maximum margin 
“street” the positive and negative data points that are on the road, with nonzero alpha values, 
are called support vectors. The decision boundary lies in the middle of the road. The 
definition of the road depends only on the support vectors so changing (adding or deleting) 
non-support vector points will not change the solution.  (Note that in higher dimensions, we 
want the widest region separated by two planes, hyperplanes, etc.)  That is, support vectors 
have weights α  associated with them = amount of influence on the surrounding region = 
Langrangian multipliers found from the optimization problem. If a training data point receives 
a weight αi of zero, this means that the data point does not affect the location of the decision 
boundary or the ‘street’. 
– The closer the support vectors of the opposite classes, the narrower the street, and the 

greater the weights (the alphas) for the corresponding support vectors. The support 
vectors have to supply more ‘pressure’ to push the margin tighter. 

– The farther apart the support vectors of the opposite classes, the wider the street, and the 
smaller the alphas for the corresponding support vectors.  The wider street needs less 
pressure on the supports to hold it in place. 

 
The kernel trick.  
Note that the equation L will in fact only require us to be able to compute the “dot product” of 
w and x.  This amounts to being able to compute the “distance” between w and x.  In ordinary 
Euclidean space, with an ordinary metric, this just is the dot product as written.  However, we 
can always map the system to a different dimension (either higher or lower, but typically 
higher because this “separates” the data better), via a transform that is called ϕ.  We will give 
examples below. The beautiful part is, we do not need to compute this mapping explicitly.  
We need only know what the corresponding dot product (= distance measure) is in the new 
space, which is called the kernel function, K.  (So in a usual, normal, untransformed 
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Euclidean space, we have a linear Kernel function.) That is, for any two vectors u, v, we have 
that  K(u, v) = ϕ(u)· ϕ(v). 
 
Solving for the Lagrange multiplier alphas in general requires numerical optimization methods 
beyond the scope of this course.   In practice, one uses quadratic programming methods.  On 
quizzes, we generally just ask you to solve for the values using algebra and/or geometry. 
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1. Useful equations for solving SVM questions, followed by an explicit example. 
 
A. Equations derived from optimizing the Lagrangian: 

1. Partial of the Lagrangian L wrt to b, i.e.,  
∂L
∂b

= 0  

α i yii∑ = 0     Note that yi ∈{−1,+1} and α i = 0 for non-suport vectors  
Important: The SUM of all the alphas (support vector weights) with their signs should 
add to 0   !!!! 
 

2. Partial of the Lagrangian L wrt w, i.e., 
∂L
∂w

= 0  

There are 2 cases. 
Case 1. When using a linear kernel: positive terms of the sum involve support vectors.  
Support vectors are training data points with alphas > 0 

 
α ii∑ yi
xi =
w  

 
Case 2. The general case, where we have kernels that define the ‘distance’ between pts 
differently. 

 
α ii∑ yiφ(

xi ) =
w  

 
B. Equations derived from the +/– boundaries and the constraints: 
 
3. The decision boundary (used to classify a new data point as either + or –): 
Case 1. When using a linear kernel,  K (

xi ,
x) = xi i

x  

 
h(x) = [(α ii∑ yi ⋅

xi ) ⋅
x]+ b ≥ 0  or  h(x) = w ⋅ x + b ≥ 0  

Case 2. When using a general kernel function.  We compute the kernel function 

 K (
xi ,
x) = xi i

x  against each of the support vectors xi .  Support vectors are training data 
points with αi > 0. 

 
h(x) = α ii∑ yiK (

xi ,
x)+ b ≥ 0  

 
4. The positive gutter: 
Case 1. When using a linear kernel: 

 
h(x) = [(α ii∑ yi ⋅

xi ) ⋅
x]+ b = 1  or  h(x) = w ⋅ x + b = 1  

Case 2. When using a general kernel: 

 
h(x) = α ii∑ yiK (

xi ,
x)+ b = 1  

 
5. The negative gutter: 

 
h(x) = [(α ii∑ yi ⋅

xi ) ⋅
x]+ b = −1  or  h(x) = w ⋅ x + b = −1;     h(x) = α ii∑ yiK (xi ,

x)+ b = −1  
 
6. The width of the margin (or “street” or “road”): 

 

m =
2
w

 where w = wi
2

i∑   (i.e., the length of w)

if just the two support vector case:

m =
2
w

⋅ (x+ −
x− ) 
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(The last equation is useful in the 1-D or 2-D case where the width of the margin can be 
visually determined.) 
 
As noted above, one common SVM kernel is just the linear one, where the kernel K(u, v) is 
just the ordinary dot product of u and v. This is often used in document classification, with 
binary-valued feature vectors, and we output a +1 if the document is one class, and –1 if in 
another.  Before looking at other kernels, let’s first try an SVM problem where we have to 
arrive at the SVM solution visually (from the 2010 exam).  Let’s take a look, on your other 
handout,. 
Let’s first determine by eye where the boundary line goes.  (Surprise – this has already been 
done for you.)  What about the width of the margin m, i.e., the width of the ‘street’?  What is 
that width? 
 
OK, the next part of the problem will ask us to find the actual equation of the SVM decision 
boundary. We can do this by inspection in such cases, in two steps. 
 
Step 1. Find a (preliminary) decision boundary line, by visual inspection. 
1. The decision boundary is on the line: y= x–2. 
2. We have a positive support vector at the point (5, 1), with the associated line equation, y= 
x–4 
3. We have a negative support vector at the point (3, 3) with the associated line equation, y=x 
 
Step 2. We manipulate the boundary line equation to get it into the canonical form, 
h(x)=w1x + w2y+b ≥ 0 
1. y ≤ x–2   (Why?  Because positive points + are below the line.) 
2. x–y –2 ≥ 0 
 
From this it seems like we can “read off” the ‘solution’  directly of: w1= +1; w2= –1; b= –2. 
But is this correct?  If we plug in these values for w into our equation for the road/street width 
m we get: 

 

m =
2
w

 where w = wi
2

i∑   = 2
wi

2
i∑

=
2

1+1
=

2
2

 

Oops!  This is not what the result for what the width is supposed to be – it is too small (by 
half). The street width, m, from visual inspection is  2√2.  The margin must be wider!  
 
Step 3. So, one must realize that any multiple c of the boundary equation is still the same 
decision boundary.  So, the general equation form below gives us the decision boundary, 
where we must now solve for c by using the other constraints of the problem (namely, the 
known street width): 

cx − cy − 2c ≥ 0  
If we plug these values into the computation for the street/road width m, we get the following 
equation, because we can set it equal to the known street width 2√2.: 

 2
(c)2 + (−c)2

=
2
2c2

= 2 2

4
2c2 = 8

2
c2 = 8

c2 =
1
4

c = 1
2

 



 5 

Now we can read off the proper values for the w vector from the general equation: 

 

cx − cy − 2c ≥ 0
1
2
x − 1

2
y −1≥ 0

so: w = +1 / 2
−1 / 2

⎡

⎣
⎢

⎤

⎦
⎥  and  b = −1

 

 
The next page of the problem asks us to compute the alpha (α) values for each of the training 
points.  Recall that we can do this by using Equation (2), Case 1 above (since we are using a 
linear kernel): 

 
α ii∑ yi
xi =
w  

But before plunging ahead, what is it we already know about the alpha values associated 
with NON-SUPPORT VECTORS?  Answer: their alphas are 0.  That is, for non-support 
vectors (all the points EXCEPT for the two we used) we already know that their alpha 
values are 0. 
 
As for the precisely two other data points, to find their associated α3 and α4 values we merely 
have to plug in values for (3, 3), which has an associated output of –1 (this becomes the ‘y’ 
value in the equation above – don’t get confused by the problem’s notation), and for (5, 1), 
which has an associated output value of +1: 

 

α ii∑ yi
xi =
w =  so α 3(−1) 3

3
⎡

⎣
⎢

⎤

⎦
⎥ +α 4 (+1) 5

1
⎡

⎣
⎢

⎤

⎦
⎥ =

1 / 2
−1 / 2

⎡

⎣
⎢

⎤

⎦
⎥

−3α 3 + 5α 4 = 1 / 2
−3α 3 +α 4 = −1 / 2 ∴
4α 4 = 1,  α 4 = 1 / 4;   − 3α 3 = −3 / 4;   α 3 = 1 / 4

 

 
Now, to cement our understanding of what the support vectors mean, the question goes on to 
ask what the alpha values would be for some new points.  First, what about a new data point 
(0, 6) classified as negative?  The answer is that the alpha would be 0, because it cannot be a 
support vector – it lies behind the negative gutter line and so has no impact on the decision 
boundary.  So what about a new data point (0, 0) also classified as negative? 
 
More generally, we can consider what happens when we move one of the support vectors, as 
the last question does.  What happens to its corresponding alpha value? (If it is still a support 
vector!).  The general rule is that alpha will change inversely with the road width m.  Since 
moving the support vector  from (3, 3) to (4, 2) decreases m, it will increase the alpha 
associated with the support vector.  You can think of this intuitively as the vector having 
to ‘push’ harder on the gutter line to force it in. 
 
3. Other spaces, other kernels 
OK, now the other big win with SVMs has to do with the ease with which you can transform 
from one space to another, where the data may be more easily separable.  The remaining 
questions all ask you about that, for different kinds of kernels (= different ways to compute 
inner products, or ‘distance’, aka, ‘similarity’ of two points).  That is, we need to define K(u,v) 
= φ(u)·φ(v), the dot product in the transformed space. (You should try these out in Winston’s 
demo program to see how the decision boundaries change.) 
The basic kernels we consider are these: 
 
1. Single linear kernel.  These are just straight lines in the plane (or in higher 
dimensions).  You should remember what perceptrons can and cannot ‘separate’ via 
cuts, and this tells you what linear kernels can do. (But see below under linear 
combination of kernels!!!) 
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 K (u, v) = (u ⋅ v)+ b,  e.g., K (u, v) = (u ⋅ v)  (ordinary dot product)  
 
2. Polynomial kernel. 

 

K (u, v) = (u ⋅ v + b)n ,  n >1
eg.,  Quadratic kernel: K (u, v) = (u ⋅ v + b)2

 

In 2-D the resulting decision boundary can look parabolic, linear, or hyperbolic depending on 
which terms in the expansion dominate.  
 
3. Radial basis function (RBF) or Gaussian kernel. 

 
K (u, v) = − exp −

u − v 2

2σ 2

⎛

⎝
⎜

⎞

⎠
⎟  

In 2-D, the decision boundaries for RBFs resemble contour circles around clusters of positive 
and negative points  Support vectors are generally positive or negative points that are closest 
to the opposing cluster.  The contour space that results is drawn from the sum of support 
vector Gaussians.   Try the demo to see. 
When the variance or spread of the Gaussian curve σ2  (‘sigma-squared’) is large, you get 
‘wider’ or ‘flatter’ Gaussians. When it is small, you get sharper Gaussians.  Hence, when using 
a small sigma-squared, the contour density will appear closer, or tighter, around the support 
vector points.  In 2-D, as a point gets closer to a support vector, it will approach exp(0)=1, and 
as it gets farther away, it approaches exp(–infinity)= 0. 
Note that you can combine several radial basis function kernels to get a perfect fit around any 
set of data points, but this will usually amount to a typical case of over-fitting – there are 2 
free parameters for every RBF kernel function.  
 
4. Sigmoidal (tanh) kernel.  This allows for a combination of linear decision boundaries, 
like neural nets. 

 

K (u, v) = tanh(ku ⋅ v + b)

K (u, v) = e
ku⋅v+b +1
ek
u⋅v+b −1

 

 
The properties of this kernel function: it is similar to the sigmoid function; it ranges from –1 to 
+1; it approaches +1 when x >> 0; and it approaches –1 when x << 0.  The resulting decision 
boundaries are logical combinations of linear boundaries, not that different from second-layer 
neurons in neural nets. 
 
5. Linear combinations of kernels (scaling or general linear combination). 
Kernel functions are closed under addition and scaling by a positive factor. 
 
Let’s practice on one more sample problem.  There are also 2 appendices at the end of this 
handout for folks that are hard-core, one working out the math, the second, solving the XOR 
problem using SVMs, by using a polynomial kernel function. 
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Part II. Boosting and the Adaboost algorithm 
0. The idea behind boosting is to find a weighted combination of s “weak” classifiers 
(classifiers that underfit the data and still make mistakes, though as we will see they make 
mistakes on less than ½ the data), h1, h2...,hs, into a single strong classifer, H(x). This will be 
in the form: 

 

H (x) = sign(α1h1(x)+α2h2 (x)++α shs (
x)

H (x) = sign aihi (
x)

i=1

s∑( )
where: H (x)∈{−1,+1},hi (

x)∈{−1,+1}

 

Recall that the sign function simply returns +1 if weighted sum is positive, and –1 if the 
weighted sum is negative (i.e., it classifies the data point as + or –). 
Each training data point is weighted. These weights are denoted wi for i=1, ..., n. Weights are 
like probabilities, from the interval (0, 1], with their sum equal to 1.  BUT weights are never 
0. This implies that all data points have some vote on what the classification shuld be, at all 
times. (You might contrast that with SVMs.)   
 
The general idea will be to pick a single ‘best’ classifier  h (one that has the lowest error rate 
when acting all alone), as an initial ‘stump’ to use.  Then, we will boost the weights of the 
data points that this classifier mis-classifies (makes mistakes on), so as to focus on the next 
classifier h that does best on the re-weighted data points.  This will have the effect of trying to 
fix up the errors that the first classifier made. Then, using this next classifier, we repeat to see 
if we can now do better than in the first round, and so on. In computational practice, we use 
the same sort of entropy-lowering function we used with ID/classifier trees: the one to pick is 
the one that lowers entropy the most.  But usually we will give you a set of classifiers that is 
easier to ‘see’, or will specify the order. 
 
In Boosting we always pick these initial ‘stump’ classifiers so that the error rate is strictly < ½. 
Note that if a stump gives an error rate greater than ½, this can always be ‘flipped’ by 
reversing the + and – classification outputs. (If the stump said –, we make it +, and vice-versa.)  
Classifiers with error exactly equal to ½ are useless because they are no better than flipping a 
fair coin. 
 
1. Here are the definitions we will use. 
Errors: 
The error rate of a classifier s, Es, is simply the sum of all the weights of the training points 
classifier hs gets wrong. 
(1–Es) is 1 minus this sum, the sum of all the weights of the training points classifier hs gets 
correct. 
By assumption, we have that: 
Es < ½   and (1– Es) > ½, so Es < (1– Es), which implies that (1– Es)/Es > 1 
 
Weights:  
αs is defined to be ½ ln[(1– Es)/ Es)], so from the definition of weights, the quantity inside the 
ln term is > 1, so all alphas must be positive numbers. 
 
Let’s write out the Adaboost algorithm and then run through a few iterations of an example 
problem. 
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2. Adaboost algorithm 
Input: training data,  (

x1, y1),…, (xn , yn )  
1. Initialize data point weights. 

    Set 
 
wi

1 =
1
n

 ∀i ∈(1,…,n)  

2. Iterate over all ‘stumps’: for s=1, ..., T 
 a. Train base learner using distribution ws on training data. 
      Get a base (stump) classifier hs(x) that achieves the lowest error rate Es .  
                                      (In examples, these are picked  from pre-defined stumps.)  

 b. Compute the stump weight: α s =
1
2
ln (1− E

s )
Es  

 c. Update weights (3 ways to do this; we pick Winston’s method) 

     For points that the classifier gets correct, wi
s+1 =

1
2
⋅
1

1− Es
⎡
⎣⎢

⎤
⎦⎥
⋅wi

s    

                                              (Note from above that 1– Es> ½, so the fraction 1/(1– Es) must  
                                              be < 2, so the total factor scaling the old weight must 
                                   be < 1, i.e., the weight of correctly classified points must go 
                                             DOWN  in the next round) 

     For points that the classifier gets incorrect, wi
s+1 =

1
2
⋅
1
Es

⎡
⎣⎢

⎤
⎦⎥
⋅wi

s   

                                               (Note from above that  Es < ½, so the fraction 1/Es)  
                                                 must be > 2, so the total factor scaling the old weight must 
                                      be > 1, i.e., the weight of incorrectly classified points must 
                                                go UP in the next round) 
 
3. Termination:  

If s > T or if H(x) has error 0 on training data or < some error threshold, exit; 
If there are no more stumps h where the weighted error is < ½, exit (i.e., all stumps 

now have error exactly equal to ½) 
 
4. Output final classifier:  

 
H (x) = sign aihi (

x)
i=1

s∑( )   [this is just the weighted sum of the original stump classifiers] 

 
Note that test stump classifiers that are never used are ones that make more errors than some 
pre-existing test stump.  In other words, if the set of mistakes stump X makes is a superset of 
errors stump Y makes, then Error(X) > Error(Y) is always true, no matter weight distributions 
we use.  Therefore, we will always pick Y over X because it makes fewer errors. So X will 
never be used! 
 
3. Let’s try a boosting problem from an exam (on the other handout). 
 
4. Food for thought questions. 
1. How does the weight αs given to classifier hs relate to the performance of hs as a function 

of the error Es? 
2. How does the error of the classifier Es affect the new weights on the samples? (How does 

it raise or lower them?) 
3. How does AdaBoost end up treating outliers? 
4. Why is not the case that new classifiers “clash” with the old classifiers on the training 

data? 
5. Draw a picture of the training error, theoretical bound on the true error, and the typical test 

error curve. 
6. Do we expect the error of new weak classifiers to increase or decrease with the number of 

rounds of estimation and re-weighting?  Why or why not?
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Answers to these questions: 
 
1. How does the weight αs given to classifier hs relate to the performance of hs as a function 

of the error Es? 
Answer: The lower the error the better the classifier h is on the (weighted) training data, and 
the larger the weight αt we give to the classifier output when classifying new examples. 
 
2. How does the error of the classifier Es affect the new weights on the samples? (How does 

it raise or lower them?) 
Answer: The lower the error, the better the classifier h classifies the (weighted) training 
examples, hence the larger the increase on the weight of the samples that it classifies 
incorrectly and similarly the larger the decrease on those that it classifies correctly. More 
generally, the smaller the error, the more significant the change in the weights on the samples. 
Note that this dependence can be seen indirectly in the AdaBoost algorithm from the weight of 
the corresponding classifier αt

. The lower the error Et, the larger αt, the better ht is on the 
(weighted) training data. 
 
3. How does AdaBoost end up treating outliers? 
Answer: AdaBoost can help us identify outliers since those examples are the hardest to 
classify and therefore their weight is likely to keep increasing as we add more weak classifiers. 
At the same time, the theoretical bound on the training error implies that as we increase the 
number of base/weak classifiers, the final classifier produced by AdaBoost will classify all the 
training examples. This means that the outliers will eventually be “correctly” classified from 
the standpoint of the training data. Yet, as expected, this might lead to overfitting. 
 
4. Why is not the case that new classifiers “clash” with the old classifiers on the training 

data? 
Answer: The intuition is that, by varying the weight on the examples, the new weak classifiers 
are trained to perform well on different sets of examples than those for which the older weak 
classifiers were trained on. A similar intuition is that at the time of classifying new examples, 
those classifiers that are not trained to perform well in such examples will cancel each other 
out and only those that are well trained for such examples will prevail, so to speak, thus 
leading to a weighted majority for the correct label. 
 
5. Draw a picture of the training error, theoretical bound on the true error, and the typical test 

error curve. 
Answer: 

 
 
6. Do we expect the error of new weak classifiers to increase or decrease with the number of 

rounds of estimation and re-weighting?  Why? 
Answer: We expect the error of the weak classifiers to increase in general since they have to 
perform well in those examples for which the weak classifiers found earlier did not perform 
well. In general, those examples will have a lot of weight yet they will also be the hardest to 
classify correctly. 
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Appendix I. Gory details for SVMs [to be read at your non-leisure] 
Equations 
a. Training: maximize width of street by maximizing the equation of support vector weights 

(αi) and the dot products of the support vectors:   LDUAL=Σαi –1/2 ΣiΣjαiαjyiyj(xi• xj)   
b. Classification: assigns unknown point u to either one of 2 classes:  + or – class: 

w• u + b > 0 then + 
w• u + b < 0 then – 
o.w., ??? so  assume  – 
 
 
 

c. Support vector constraints: w• x++ b  = 1; w• x_+ b  = –1 or   yi(w• xi + b) = 1  where yi= 
+1 or –1 

d. w = Σα iyixi    is a function of weights on the support vectors, which are 0 for non-support 
vectors (Thus non-support vectors contribute nothing to where the decision boundary 
goes.) 

e. Σα iyi = 0  (The constraints that must be obeyed to correctly classify the training points.) 
 
 
Now let’s do the math to see where this all comes from 
0. The two gutter lines are:  w ⋅x1 + b = +1;  w ⋅x2 + b = −1  
1. From Winston’s picture, the street width is found as: 

 

w ⋅ (x1 − x2 ) = 2
w
w

⋅ (x1 − x2 ) =
2
w

 

 
2. To maximize this, we minimize w , which is the same as minimizing ½ w 2  (Why this? 
We will be taking the derivative in just a bit, and the derivative of this is just w .) 
3. So we want to: 
  A. minimize ½ w 2  s.t. yi (w ⋅ xi + b) −1 = 0  
4.  To do the minimization, we use a Lagrangian formulation, to add a penalty function in 
order to ensure that the constraints on correctly classifying the training points are obeyed: 

B. minimize L where L=½ w 2 − α i
i=1

r

∑ [yi (w ⋅ xi + b) −1]    

(See last page for cheat sheet on how Lagrange multipliers work.) 
5. Take partial derivatives with respect to the 2 variables, w  and b: 
 C. 

  
∂L
∂w

= 0   ∂L
∂b

= 0  

So this means we have: 

 C.1 
∂ 1

2 w
2

∂w
= w  

 C.2 
∂L
∂w

= w − α i yixi
i=1

r

∑ ⇒ w = α i yixi
i=1

r

∑  we substitute for w  in (B) above to 

get C.4 
 

b= –d 
w•[xy] = d 
w•[x'y'] > d 
w•[x"y"] < d 
 
 

w 

[xy] • 
– 

+ 
[x'y'] 

[x"y"] 
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 C.3 
∂L
∂b

= α i
i=1

r

∑ yi = 0  = basic constraint on support vectors α i  

 C.4  Substituting for w = α i yixi
i=1

r

∑  : 

L = 1
2 w

2 − α i
i=1

r

∑ [yi (wi ⋅ xi + b) −1]

= 1
2 ( α i yi

i=1

r

∑ xi ) ⋅ ( α j y j
j=1

r

∑ x j ) − ( α i yi
i=1

r

∑ xi )( α j y j
j=1

r

∑ x j ) − b α i
i=1

r

∑ yi + α i
i=1

r

∑

= α i
i=1

r

∑ + 1
2 α i

j=1

r

∑ α j yi
i=1

r

∑ yjxi ⋅ x j − α i
j=1

r

∑ α j yi
i=1

r

∑ yjxi ⋅ x j

= α i
i=1

r

∑ − 1
2 α i

j=1

r

∑ α j yi
i=1

r

∑ yjxi ⋅ x j

 

 

 C.5 maximize LDual = α i
i=1

r

∑ − 1
2 α i

j=1

r

∑ α j yi
i=1

r

∑ yjxi ⋅ x j      

(IMPORTANT:  Note dot product of training data, the last 2 terms! This is  the 
“similarity” measure.) 
Worked Math example, linear SVM, 2 support vector “points” (one positive example, 
one negative example) 
 
 
 
                                           

   

yi (w ⋅ xi + b) = 1;    yi (w ⋅ xi + b) −1 = 0

w = α i yixi
i=1

2

∑

α i yi
i=1

2

∑ = 0

 

Find: α1,α2 ,w,b : 

L = 1
2 w

2 − α i
i=1

r

∑ [yi (w ⋅ xi + b) −1]

= 1
2 w

2 −α1(+1 ⋅ (w ⋅ x1 + b) −1) −α2 (−1 ⋅ (w ⋅ x2 + b) −1)
 

 
∂L
∂w

= w = α1x1 −α2x2

∂L
∂b

= −α1 +α2 = 0;   ∴  α1 = α2

 

Substituting for w = α1x1 −α2x2  from above in the equation for L, we have: 

L = 1
2[α1x1 −α2x2 ]

2 −α1[+1 ⋅ ((α1x1 −α2x2 ) ⋅ x1 + b) −1]−α2[−1 ⋅ ((α1x1 −α2x2 ) ⋅ x2 + b) −1]
= 1

2[α1
2x1 ⋅ x1 −α1α2x1 ⋅ x2 +α2

2x2 ⋅ x2 ]−α1[α1x1 ⋅ x1 −α2x2 ⋅ x1 + b −1]−α2[−α1x1 ⋅ x2 +α2x2 ⋅ x2 − b −1]
 
 

0 from constraint C.3 

x2 (0,1), –  

x1 (1,0), +  
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Since 
x1 ⋅ x1 = 1;  x2 ⋅ x2 = 1;  x1 ⋅ x2 = 0  (here is where we use the dot product!), we can simplify this to:
 
L = 1

2[α1
2 +α2

2 ]−α1
2 −α1b +α1 −α2

2 +α2b +α2

Since α1 = α2

L = 1
2[2α1

2 ]− 2α1
2 + 2α1 = −α1

2 + 2α1

 

Since we want to maximize (minimize) L,  
∂L
α1

= 0 = −2α1 + 2 ⇒α1 = 1;  since α1 = α2 ,   α2 = 1   (Note that 

α i
i=1

2

∑ yi = 1(+1) +1(–1) = 0 as required)  

Finally, to find b: 
yi (w ⋅ xi + b) = 1
w = α1x1 −α2x2 = x1 − x2

Substituting for w,
1 ⋅ (x1 − x2 ) ⋅ x1 + b = 1
x1 ⋅ x1 − x2 ⋅ x1 + b = 1,  but x1 ⋅ x1 = 1 and  x2 ⋅ x1 = 0,  so
b = 0

 

Alternatively, note that decision boundary goes through the origin, so b=0.  Final decision 
boundary line is therefore just the line x1 = x2 , i.e., line through origin at 45 degrees, with 
slope 1. 
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Lagrange Multipliers Cheat Sheet 
 
1. A method for finding the maximum or minimum or a function, subject to constraints. 
2. Key idea: define a new function, L, in terms of the original function, f(x,y), the constraint 
equation g(x,y), and a new variable, the “Langrange multiplier” λ, which is a penalty for when 
the constraint equation is violated (not equal to zero), i.e., we want to maximize f(x,y) s.t. 
g(x,y)=0. 

L= f(x,y)+ λg(x,y) 
 

3. To do this we take partial derivatives, with respect to x, y, and λ: 
 
∂L
∂x

=
∂f (x, y)
∂x

+ λ ∂g(x, y)
∂x

= 0

∂L
∂y

=
∂f (x, y)

∂y
+ λ ∂g(x, y)

∂y
= 0

∂L
∂λ

= g(x, y) = 0

 

 
4. Graphical intuition.  As we travel along the constraint surface g(x,y)=0, clearly g(x,y) does 
not change, so the partials of g with respect to both x and y must be 0, i.e., 
∂g(x, y)

∂x
= 0  ∂g(x, y)

∂y
= 0  

When we get to the maximum of f(x,y), 
∂f (x, y)
∂x

= 0  and ∂f (x, y)
∂y

= 0 because slope at max =0 . 

Picture: 
 
 
 
 
 
 
 
 
 
Example:  f= x+y;  g=x2+y2 (constraint is a circle) 
L= (x+y ) + λ(x2+y2–1) 
∂L
∂x

= 1+ 2λx = 0

∂L
∂y

= 1+ 2λy = 0

λ =
−1
2x

1+ 2(−1
2x

)y = 0  ⇒ y = x

From constraint as circle:

x2 + y2 = 2x2 = 1  ∴  x= 1
2 = y

 

g(x,y)=0 

tangent for f(x,y) along g 
surface  
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Appendix II.  SVMs, another worked example, for a polynomial kernel function, 
XOR problem 

 
 
 
The input data are shown in the graph in the original space. 
 
For this problem, the polynomial kernel transform K = (1 + v1.v2)2  is used 
 
1. Note that K(xi xj)=K(xj xi) 
K(x1,x1) = (1 + [–1 –1].[–1 –1]) 2 

                = (1 + 

� 

2

� 

2 cosθ) 2  [or (1 + (–1)(–1) + (–1)(–1)) 2 ] 

                =  (1 + 2) 2 =  9 
 
K(x1,x2) =  (1 + [–1 –1].[–1 +1]) 2 

                = (1 + 

� 

2

� 

2 cosθ) 2 [or alternatively: (1+(–1)(–1)+(–1)(+1))2 

                =  (1 + 0) 2 =  1 
 
K(x1,x3) =  (1 + [–1 –1].[+1 +1]) 2 = 1 ;   K(x1,x4) =  (1 + [–1 –1].[+1 –1]) 2  = 1    
K(x2,x2) =  (1 + [–1 +1].[–1 +1]) 2  = 9;   K(x2,x3) =  (1 + [–1 +1].[+1 +1]) 2  = 1 
K(x2,x4) =  (1 + [–1 –1].[+1 –1]) 2  = 1    
K(x3,x3) =  (1 + [–1 –1].[–1 –1]) 2  = 9;   K(x3,x4) =  (1 + [–1 –1].[+1 –1]) 2  = 1;     
K(x4,x4) =  (1 + [+1 –1].[+1 –1]) 2 =  9 
 
2.  Enter LDual as an algebraic expression of a1, a2, a3, a4. 
 
Sum the alphas (a1 to a4), then sum over all dot products multiplied by their a’s 
(alphas) and yi multipliers, either +1 or –1 whether the data sample point is positive or 
negative (given in the data table). 
 
LDual = 

� 

ai
i
∑ − 12 aiajyiyjxi.xj

j
∑

i
∑  

        = (a1 + a2 + a3 + a4)–½((a1a1(–1)(–1)K(x1 x1)+a1a2(–1)(1)K(x1 x2) +a1a3(–1)(–
1)K(x1 x3) +a1a4(–1)(1)K(x1 x4) + a2a1(1)(–1)K(x2 x1)+a2a2(1)(1)K(x2 x2)+ a2a3(1)(–
1)K(x2 x3)+ a2a4(1)(1)K(x2 x4) 
+ a3a1(–1)(–1)K(x3 x1)+ a3a2(–1)(1)K(x3 x2)+ a3a3(–1)(–1)K(x3 x3)+ a3a4(–1)(1)K(x3 x4) 
+ a4a1(1)(–1)K(x4 x1)+ a4a2(1)(1)K(x4 x2)+ a4a3(1)(–1)K(x4 x3)+ a4a4(1)(1)K(x4 x4)) 
 
      =(a1+a2+a3+a4)–½(9a1

2–a1a2+a1a3–a1a4–a2a1+9a2
2–a2a3+a2a4+a3a1–a3a2+9a3

2–a3a4–
a4a1+a4a2–a4a3+9a4

2) 
      =(a1+a2+a3+a4)–½(9a1

2–2a1a2+2a1a3–2a1a4+9a2
2–2a2a3+2a2a4+9a3

2–2a3a4+9a4
2) 

 
3.  You can optimize the above equation by setting to zero its partial derivatives with 
respect to each ai. 
 
 dL/da1 =  1 – 9a1 + a2 + a3 – a4 
 dL/da2 =  1 + a1 – 9a2 + a3 – a4 
 dL/da3 =  1 + a1 – a2 – 9a3 + a4 
 dL/da4 =  1 + a1 – a2 + a3  –9a4 
 

1 

-1 

1 

-1 

x1 

x2 x3 

x4 
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4.  Solving these simultaneous equations, yields ai =1/8.  (As a check, Σaiyi = 0, as it 
should.) 
 
5.  For a polynomial kernel, the degree of the polynomial and the original number of 
features determine the ultimate number of features in the transformed space (basically 
all combinations of input features up to the specified degree, with some terms scaled 
by the magnitude of the feature vector) 

 
for xi = [a b]   (a and b are just used here to designate first and second feature values,  
respectively) 
Phi(xi) = [a2  b2  ab

� 

2  a

� 

2   b

� 

2   1] 
 
Substituting values for the four data points: 
x1 [–1  –1]:  Phi(x1) = [1  1 

� 

2   –

� 

2   –

� 

2   1] 
x2 [–1  +1]:  Phi(x2) = [1  1  –

� 

2   –

� 

2   

� 

2   1] 
x3 [+1  –1]:  Phi(x3) = [1  1  –

� 

2   

� 

2   –

� 

2   1] 
x4 [+1  +1]:  Phi(x4) = [1  1  

� 

2   

� 

2   

� 

2   1] 
 
6.  The classification (aka weight) vector w = Σaiyixi: 
x1:  1/8(–1)[1  1 

� 

2   –

� 

2   –

� 

2   1] 
x2:  1/8(1)[1  1  –

� 

2   –

� 

2   

� 

2   1] 
x3:  1/8(1)[1  1  –

� 

2   

� 

2   –

� 

2   1] 
x4:  1/8(–1) [1  1  

� 

2   

� 

2   

� 

2   1] 
 

Adding these vectors as per the above equation, w = [0  0  

� 

− 2
2

  0   0   0] 

 
7.  To calculate b, substitute w and one of the data samples into any constraint 
equation: 
 
w.x1 + b = –1 

w . x1:  [0  0  

� 

− 2
2

  0   0   0] . [1  1 

� 

2   -

� 

2   -

� 

2   1] = 0 + 0 + –1 + 0 + 0 + 0 =–1 

so –1 + b = –1, so b = 0.  Alternatively, you could notice that b passes through the 
origin, so it is 0. 
 
8.  To find an algebraic expression for the classifier function,  w . x + b, substitute in  
Phi(x) for x: 
(x = [x1 x2] instead of [a b] as described above) 

w . Phi(x) + b = (0*x1 + 0*x2 + 

� 

− 2
2

� 

2 x1x2 + 0*

� 

2 x1 + 0*

� 

2 x2  + 0*1) + 0 = –x1x2 

 
9.  For each test point, substitute the vector into the above equation and see if we get 
the correct output: 
 f([–1, –1]) = –(–1)(–1) = 1  (correct, a positive sample point) 
 f([-1, 1])= –(–1)(1) = –1      (correct, a negative sample  point)  
   etc. 
f([2, 2]) = –4 
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10.  A fifth data point at [2 2] with a yi value of –1 (a negative example) would have an 
ai (i.e. a5) value of 0 because it would not be a support vector.  You can see this two 
ways:  Its classifier value, calculated above, is  –4, and we know support vectors have 
values of 1 or –1; or you could plot it on the graph and notice that it does not change 
the decision boundary. 
 
 
 


