The Bernoulli process

- A sequence of independent Bernoulli trials

 - At each trial, \(i \):
 - \(P(\text{success}) = P(X_i = 1) = p \)
 - \(P(\text{failure}) = P(X_i = 0) = 1 - p \)

- Examples:
 - Sequence of lottery wins/losses
 - Sequence of ups and downs of the Dow Jones
 - Arrivals (each second) to a bank
 - Arrivals (at each time slot) to server

Random processes

- First view:
 sequence of random variables \(X_1, X_2, \ldots \)

- \(E[X_i] = \)
- \(\text{Var}(X_i) = \)

- Second view:
 what is the right sample space?

- \(P(X_i = 1 \text{ for all } i) = \)

- Random processes we will study:
 - Bernoulli process
 (memoryless, discrete time)
 - Poisson process
 (memoryless, continuous time)
 - Markov chains
 (with memory/dependence across time)
Interarrival times

- T_1: number of trials until first success
 - $P(T_1 = t) = \ldots$
 - Memoryless property
 - $E[T_1] = \ldots$
 - $Var(T_1) = \ldots$

- If you buy a lottery ticket every day, what is the distribution of the length of the first string of losing days?

Time of the kth arrival

- Given that first arrival was at time t
 - i.e., $T_1 = t$:
 - additional time, T_2, until next arrival
 - has the same (geometric) distribution
 - independent of T_1

- Y_k: number of trials to kth success
 - $E[Y_k] = \ldots$
 - $Var(Y_k) = \ldots$
 - $P(Y_k = t) = \ldots$

Splitting of a Bernoulli Process

(using independent coin flips)

Yields Bernoulli processes

Merging of Indep. Bernoulli Processes

Yields a Bernoulli process
(collisions are counted as one arrival)

Poisson approximation to binomial

- Number of arrivals in n slots is binomial
 $p_S(k) = \frac{n!}{(n-k)k!} p^k (1-p)^{n-k}, \quad$ for $k \geq 0$

- Interesting to think of:
 $n \to \infty$ with $\lambda = np$ constant
 $p_S(k) = \frac{n!}{(n-k)k!} p^k (1-p)^{n-k}$
 $= \frac{n(n-1) \cdots (n-k+1)}{k!} \cdot \frac{\lambda^k}{n^k} \cdot \left(1 - \frac{\lambda}{n}\right)^{n-k}$
 $= \frac{n}{n} \cdot \frac{n-1}{n} \cdot \frac{n-k+1}{n} \cdot \frac{\lambda^k}{k!} \cdot \left(1 - \frac{\lambda}{n}\right)^{n-k}$

- For any fixed $k \geq 0$,
 $\lim_{n \to \infty} (1 - \lambda/n)^{n-k} = e^{-\lambda}, \quad$ so:
 $\lim_{n \to \infty} p_S(k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 1, 2, \ldots$