LECTURE 14
The Poisson process

- **Readings**: Start Section 6.2.

Lecture outline
- Review of Bernoulli process
- Definition of Poisson process
- Distribution of number of arrivals
- Distribution of interarrival times
- Other properties of the Poisson process

bernoulli review
- Discrete time; success probability \(p \)
- Number of arrivals in \(n \) time slots: binomial pmf
- Interarrival times: geometric pmf
- Time to \(k \) arrivals: Pascal pmf
- Memorylessness

Definition of the Poisson process

- Time homogeneity:
 \[P(k, \tau) = \text{Prob. of } k \text{ arrivals in interval of duration } \tau \]
- Numbers of arrivals in disjoint time intervals are **independent**
- Small interval probabilities:
 For VERY small \(\delta \):
 \[
 P(k, \delta) \approx \begin{cases}
 1 - \lambda \delta, & \text{if } k = 0; \\
 \lambda \delta, & \text{if } k = 1; \\
 0, & \text{if } k > 1.
 \end{cases}
 \]
 - \(\lambda \): “arrival rate”

PMF of Number of Arrivals \(N \)

- Finely discretize \([0, t] \): approximately Bernoulli
- \(N_t \) (of discrete approximation): binomial
- Taking \(\delta \to 0 \) (or \(n \to \infty \)) gives:
 \[
 P(k, \tau) = \frac{(\lambda \tau)^k e^{-\lambda \tau}}{k!}, \quad k = 0, 1, \ldots
 \]
- \(E[N_t] = \lambda t \), \(\text{var}(N_t) = \lambda t \)
Example

- You get email according to a Poisson process at a rate of $\lambda = 5$ messages per hour. You check your email every thirty minutes.

- $\text{Prob(} \text{no new messages}) =$

- $\text{Prob(} \text{one new message}) =$

Interarrival Times

- Y_k time of kth arrival

- **Erlang** distribution:
 $$f_{Y_k}(y) = \frac{\lambda^k y^{k-1} e^{-\lambda y}}{(k-1)!}, \quad y \geq 0$$

 - Time of first arrival ($k = 1$):
 - exponential:
 $$f_{Y_1}(y) = \lambda e^{-\lambda y}, \quad y \geq 0$$
 - Memoryless property: The time to the next arrival is independent of the past

Bernoulli/Poisson Relation

- Sum of independent Poisson **random variables** is Poisson

- Sum of independent Poisson **processes** is Poisson

- What is the probability that the next arrival comes from the first process?

Adding Poisson Processes

<table>
<thead>
<tr>
<th>POISSON</th>
<th>BERNOULLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Times of Arrival</td>
<td>Continuous</td>
</tr>
<tr>
<td>Arrival Rate</td>
<td>λ/unit time</td>
</tr>
<tr>
<td>PMF of # of Arrivals</td>
<td>Poisson</td>
</tr>
<tr>
<td>Interarrival Time Distr.</td>
<td>Exponential</td>
</tr>
<tr>
<td>Time to k-th arrival</td>
<td>Erlang</td>
</tr>
</tbody>
</table>