LECTURE 20
THE CENTRAL LIMIT THEOREM

• Readings: Section 5.4

• X_1, \ldots, X_n i.i.d., finite variance σ^2

• “Standardized” $S_n = X_1 + \cdots + X_n$:
 \[Z_n = \frac{S_n - \mu}{\sigma} = \frac{S_n - n\mu}{\sqrt{n}\sigma} \]
 \[\mu = \mathbb{E}[S_n] = 0, \quad \text{var}(Z_n) = 1 \]

• Let Z be a standard normal r.v. (zero mean, unit variance)

• Theorem: For every c:
 \[P(Z_n \leq c) \to P(Z \leq c) \]

• $P(Z \leq c)$ is the standard normal CDF, $\Phi(c)$, available from the normal tables

Usefulness

• universal; only means, variances matter
• accurate computational shortcut
• justification of normal models

What exactly does it say?

• CDF of Z_n converges to normal CDF
 – not a statement about convergence of PDFs or PMFs

Normal approximation

• Treat Z_n as if normal
 – also treat S_n as if normal

Can we use it when n is “moderate”?

• Yes, but no nice theorems to this effect
• Symmetry helps a lot

The pollster’s problem using the CLT

• f: fraction of population that “…”
• ith (randomly selected) person polled:
 \[X_i = \begin{cases} 1, & \text{if yes,} \\ 0, & \text{if no.} \end{cases} \]

• $M_n = (X_1 + \cdots + X_n)/n$

• Suppose we want:
 \[P(|M_n - f| \geq .01) \leq .05 \]

• Event of interest: $|M_n - f| \geq .01$
 \[\frac{|X_1 + \cdots + X_n - nf|}{n} \geq .01 \]

 \[\frac{|X_1 + \cdots + X_n - nf|}{\sqrt{n}\sigma} \geq \frac{.01\sqrt{n}}{\sigma} \]

 \[P(|M_n - f| \geq .01) \approx P(|Z| \geq \frac{.01\sqrt{n}}{\sigma}) \leq P(|Z| \geq .02\sqrt{n}) \]
Apply to binomial

- Fix \(p \), where \(0 < p < 1 \)
- \(X_i \): Bernoulli(\(p \))
- \(S_n = X_1 + \cdots + X_n \): Binomial(\(n, p \))
 - mean \(np \), variance \(np(1 - p) \)
- CDF of \(\frac{S_n - np}{\sqrt{np(1-p)}} \rightarrow \) standard normal

Example

- \(n = 36, p = 0.5 \); find \(P(S_n \leq 21) \)

- Exact answer:
 \[
 \sum_{k=0}^{21} \binom{36}{k} \left(\frac{1}{2} \right)^k = 0.8785
 \]

The 1/2 correction for binomial approximation

- \(P(S_n \leq 21) = P(S_n < 22) \), because \(S_n \) is integer
- Compromise: consider \(P(S_n \leq 21.5) \)

De Moivre–Laplace CLT (for binomial)

- When the 1/2 correction is used, CLT can also approximate the binomial p.m.f. (not just the binomial CDF)

\[
P(S_n = 19) = P(18.5 \leq S_n \leq 19.5)
\]

\[
18.5 \leq S_n \leq 19.5 \iff 18.5 - 18.5 = \frac{S_n - 18}{3} \leq \frac{19.5 - 18}{3} \iff 0.17 \leq Z_n \leq 0.5
\]

\[
P(S_n = 19) \approx P(0.17 \leq Z \leq 0.5)
\]

\[
= P(Z \leq 0.5) - P(Z \leq 0.17)
= 0.6915 - 0.5675
= 0.124
\]

- Exact answer:
 \[
 \binom{36}{19} \left(\frac{1}{2} \right)^{36} = 0.1251
 \]

Poisson vs. normal approximations of the binomial

- Poisson arrivals during unit interval equals: sum of \(n \) (independent) Poisson arrivals during \(n \) intervals of length \(1/n \)
 - Let \(n \to \infty \), apply CLT (??)
 - Poisson=normal (???)
- Binomial(\(n, p \))
 - \(p \) fixed, \(n \to \infty \): normal
 - \(np \) fixed, \(n \to \infty, p \to 0 \): Poisson
- \(p = 1/100, n = 100 \): Poisson
- \(p = 1/10, n = 500 \): normal