Problem 5.33 Dimensionless form of the well-depth analysis

Even the messiest results are cleaner and have lower entropy in dimensionless form. The four quantities \(h, g, T, \) and \(c_s \) produce two independent dimensionless groups (Section 2.4.1). An intuitively reasonable pair are

\[
\bar{h} \equiv \frac{h}{gT^2} \quad \text{and} \quad \bar{T} \equiv \frac{gT}{c_s}.
\]

(5.40)

a. What is a physical interpretation of \(\bar{T} \)?

b. With two groups, the general dimensionless form is \(\bar{h} = f(\bar{T}) \). What is \(\bar{h} \) in the easy case \(\bar{T} \to 0 \)?

c. Rewrite the quadratic-formula solution

\[
h = \left(\frac{-\sqrt{2/g} + \sqrt{2/g + 4T/c_s}}{2/c_s} \right)^2
\]

(5.41)

as \(\bar{h} = f(\bar{T}) \). Then check that \(f(\bar{T}) \) behaves correctly in the easy case \(\bar{T} \to 0 \).

Problem 5.34 Spacetime diagram of the well depth

How does the spacetime diagram [44] illustrate the successive approximation of the well depth? On the diagram, mark \(h_0 \) (the zeroth approximation to the depth), \(h_1 \), and the exact depth \(h \). Mark \(t_0 \), the zeroth approximation to the free-fall time. Why are portions of the rock and sound-wavefront curves dotted? How would you redraw the diagram if the speed of sound doubled? If \(g \) doubled?

5.5 Daunting trigonometric integral

The final example of taking out the big part is to estimate a daunting trigonometric integral that I learned as an undergraduate. My classmates and I spent many late nights in the physics library solving homework problems; the graduate students, doing the same for their courses, would regale us with their favorite mathematics and physics problems.

The integral appeared on the mathematical-preliminaries exam to enter the Landau Institute for Theoretical Physics in the former USSR. The problem is to evaluate

\[
\int_{-\pi/2}^{\pi/2} (\cos t)^{100} \, dt
\]

(5.42)
5.5 Daunting trigonometric integral

to within 5% in less than 5 min without using a calculator or computer! That \((\cos t)^{100}\) looks frightening. Most trigonometric identities do not help. The usually helpful identity \((\cos t)^2 = (\cos 2t - 1)/2\) produces only

\[
(\cos t)^{100} = \left(\frac{\cos 2t - 1}{2} \right)^{50},
\]

which becomes a trigonometric monster upon expanding the 50th power. A clue pointing to a simpler method is that 5% accuracy is sufficient—so, find the big part! The integrand is largest when \(t\) is near zero. There, \(\cos t \approx 1 - t^2/2\) (Problem 5.20), so the integrand is roughly

\[
(\cos t)^{100} \approx \left(1 - \frac{t^2}{2} \right)^{100}.
\]

It has the familiar form \((1 + z)^n\), with fractional change \(z = -t^2/2\) and exponent \(n = 100\). When \(t\) is small, \(z = -t^2/2\) is tiny, so \((1 + z)^n\) may be approximated using the results of Section 5.3.4:

\[
(1 + z)^n \approx \begin{cases} 1 + nz & (z \ll 1 \text{ and } nz \ll 1) \\ e^{nz} & (z \ll 1 \text{ and } nz \text{ unrestricted}) \end{cases}.
\]

Because the exponent \(n\) is large, \(nz\) can be large even when \(t\) and \(z\) are small. Therefore, the safest approximation is \((1 + z)^n \approx e^{nz}\); then

\[
(\cos t)^{100} \approx \left(1 - \frac{t^2}{2} \right)^{100} \approx e^{-50t^2}.
\]

A cosine raised to a high power becomes a Gaussian! As a check on this surprising conclusion, computer-generated plots of \((\cos t)^n\) for \(n = 1 \ldots 5\) show a Gaussian bell shape taking form as \(n\) increases.

Even with this graphical evidence, replacing \((\cos t)^{100}\) by a Gaussian is a bit suspicious. In the original integral, \(t\) ranges from \(-\pi/2\) to \(\pi/2\), and these endpoints are far outside the region where \(\cos t \approx 1 - t^2/2\) is an accurate approximation. Fortunately, this issue contributes only a tiny error (Problem 5.35). Ignoring this error turns the original integral into a Gaussian integral with finite limits:

\[
\int_{-\pi/2}^{\pi/2} (\cos t)^{100} \, dt \approx \int_{-\pi/2}^{\pi/2} e^{-50t^2} \, dt.
\]
Unfortunately, with finite limits the integral has no closed form. But extending the limits to infinity produces a closed form while contributing almost no error (Problem 5.36). The approximation chain is now

\[
\int_{-\pi/2}^{\pi/2} (\cos t)^{100} \, dt \approx \int_{-\pi/2}^{\pi/2} e^{-50t^2} \, dt \approx \int_{-\infty}^{\infty} e^{-50t^2} \, dt. \tag{5.48}
\]

Problem 5.35 Using the original limits

The approximation \(\cos t \approx 1 - t^2/2\) requires that \(t\) be small. Why doesn’t using the approximation outside the small-\(t\) range contribute a significant error?

Problem 5.36 Extending the limits

Why doesn’t extending the integration limits from \(\pm \pi/2\) to \(\pm \infty\) contribute a significant error?

The last integral is an old friend (Section 2.1): \(\int_{-\infty}^{\infty} e^{-\alpha t^2} \, dt = \sqrt{\pi/\alpha}\). With \(\alpha = 50\), the integral becomes \(\sqrt{\pi/50}\). Conveniently, 50 is roughly \(16\pi\), so the square root—and our 5% estimate—is roughly 0.25.

For comparison, the exact integral is (Problem 5.41)

\[
\int_{-\pi/2}^{\pi/2} (\cos t)^n \, dt = 2^{-n} \left(\binom{n}{n/2} \right) \pi. \tag{5.49}
\]

When \(n = 100\), the binomial coefficient and power of two produce

\[
\frac{12611418068195524166851562157}{158456325028528675187087900672} \pi \approx 0.25003696348037. \tag{5.50}
\]

Our 5-minute, within-5% estimate of 0.25 is accurate to almost 0.01%!

Problem 5.37 Sketching the approximations

Plot \((\cos t)^{100}\) and its two approximations \(e^{-50t^2}\) and \(1 - 50t^2\).

Problem 5.38 Simplest approximation

Use the linear fractional-change approximation \((1 - t^2/2)^{100} \approx 1 - 50t^2\) to approximate the integrand; then integrate it over the range where \(1 - 50t^2\) is positive. How close is the result of this 1-minute method to the exact value 0.2500…?

Problem 5.39 Huge exponent

Estimate

\[
\int_{-\pi/2}^{\pi/2} (\cos t)^{10000} \, dt. \tag{5.51}
\]