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2.3 Low-pass filters

The next example is an analysis that originated in the study of circuits
(Section 2.3.1). After those ontological bonds are snipped – once the
subject is “considered independently of its original associations” – the
core idea (the abstraction) will be useful in understanding diverse natural
phenomena including temperature fluctuations (Section 2.3.2).

2.3.1 RC circuits

R

C

Vin Vout
Linear circuits are composed of resistors, ca-
pacitors, and inductors. Resistors are the only
time-independent circuit element. To get time-
dependent behavior – in other words, to get any
interesting behavior – requires inductors or ca-
pacitors. Here, as one of the simplest and most
widely applicable circuits, we will analyze the behavior of an RC circuit.

The input signal is the voltage V0, a function of time t. The input signal
passes through the RC system and produces the output signal V1(t). The
differential equation that describes the relation between V0 and V1 is
(from 8.02)

dV1

dt
+

V1

RC
=

V0

RC
. (2.11)

This equation contains R and C only as the product RC. Therefore, it
doesn’t matter what R and C individually are; only their product RC
matters. Let’s make an abstraction and define a quantity τ as τ ≡ RC.

This time constant has a physical meaning. To see what it is, give the
system the simplest nontrivial input: V0, the input voltage, has been zero
since forever; it suddenly becomes a constant V at t = 0; and it remains
at that value forever (t > 0). What is the output voltage V1? Until t = 0,
the output is also zero. By inspection, you can check that the solution for
t ≥ 0 is

V1 = V
(
1 − e−t/τ

)
. (2.12)

In other words, the output voltage exponentially approaches the input
voltage. The rate of approach is determined by the time constant τ. In
particular, after one time constant, the gap between the output and input
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voltages shrinks by a factor of e. Alternatively, if the rate of approach
remained its initial value, in one time constant the output would match
the input (dotted line).

t

V

0

input

τ

The actual inputs provided by the world are more complex than a step
function. But many interesting real-world inputs are oscillatory (and it
turns out that any input can be constructed by adding oscillatory inputs).
So let’s analyze the effect of an oscillatory input V0(t) = Aeiωt, where A is
a (possibly complex) constant called the amplitude, and ω is the angular
frequency of the oscillations. That complex-exponential notation really
means that the voltage is the real part of Aeiωt, but the ‘real part’ notation
gets distracting if it is repeated in every equation, so traditionally it is
omitted.

The RC system is linear – it is described by a linear differential equation
– so the output will also oscillate with the same frequency ω. There-
fore, write the output in the form Beiωt, where B is a (possibly complex)
constant. Then substitute V0 and V1 into the differential equation

dV1

dt
+

V1

RC
=

V0

RC
. (2.13)

After removing a common factor of eiωt, the result is

Biω +
B
τ

=
A
τ
, (2.14)

or

B =
A

1 + iωτ
. (2.15)

This equation – a so-called transfer function – contains many generalizable
points. First, ωτ is a dimensionless quantity. Second, when ωτ is small
and is therefore negligible compared to the 1 in the denominator, then
B ≈ A. In other words, the output almost exactly tracks the input.

Third, when ωτ is large, then the 1 in the denominator is negligible, so
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B ≈ A
iωτ

. (2.16)

In this limit, the output variation (the amplitude B) is shrunk by a factor of
ωτ in comparison to the input variation (the amplitude A). Furthermore,
because of the i in the denominator, the output oscillations are delayed
by 90 ◦ relative to the input oscillations (where 360 ◦ is a full period).
Why 90 ◦? In the complex plane, dividing by i is equivalent to rotating
clockwise by 90 ◦. As an example of this delay, if ωτ � 1 and the input
voltage oscillates with a period of 4hr, then the output voltage peaks
roughly 1hr after the input peaks. Here is an example with ωτ = 4:

t

V input

In summary, this circuit allows low-frequency inputs to pass through to
the output almost unchanged, and it attenuates high-frequency inputs.
It is called a low-pass filter: It passes low frequencies and blocks high
frequencies. The idea of a low-pass filter, now that we have abstracted it
away from its origin in circuit analysis, has many applications.

2.3.2 Temperature fluctuations

The abstraction of a low-pass filter resulting from the solutions to the RC
differential equation are transferable. The RC circuit is, it turns out, a
model for heat flow; therefore, heat flow, which is everywhere, can be
understood by using low-pass filters. As an example, I often prepare a
cup of tea but forget to drink it while it is hot. Slowly it cools toward room
temperature and therefore becomes undrinkable. If I neglect the cup for
still longer – often it spends the night in the microwave, where I forgot it
– it warms and cools with the room (for example, it will cool at night as
the house cools). A simple model of its heating and cooling is that heat
flows in and out through the walls of the mug: the so-called thermal
resistance. The heat is stored in the water and mug, which form a heat
reservoir: the so-called thermal capacitance. Resistance and capacitance
are transferable abstractions.
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If Rt is the thermal resistance and Ct is the thermal capacitance, their
product RtCt is, by analogy with the RC circuit, a thermal time constant τ.
To measure it, heat up a mug of tea and watch how the temperature falls
toward room temperature. The time for the temperature gap to fall by a
factor of e is the time constant τ. In my extensive experience of neglecting
cups of tea, in 0.5hr an enjoyably hot cup of tea becomes lukewarm. To
give concrete temperatures to it, ‘enjoyably warm’ is perhaps 130 ◦F, room
temperature is 70 ◦F, and lukewarm is perhaps 85 ◦F. The temperature gap
between the tea and the room started at 60 ◦F and fell to 15 ◦F – a factor
of 4 decrease. It might have required 0.3hr to have fallen by a factor of e
(roughly 2.72). This time is the time constant.
How does the teacup respond to daily temperature variations? In this
system, the input signal is the room’s temperature; it varies with a fre-
quency of f = 1day−1. The output signal is the tea’s temperature. The
dimensionless parameter ωτ is, using ω = 2π f , given by

2π f︸︷︷︸
ω

τ = 2π × 1day−1︸ ︷︷ ︸
f

× 0.3hr︸︷︷︸
τ

×
1day
24hr

, (2.17)

or approximately 0.1. In other words, the system is driven slowly (ω is not
large enough to make ωτ near 1), so slowly that the inside temperature
almost exactly follows the outside temperature.
A situation showing the opposite extreme of behavior is the response of
a house to daily temperature variations. House walls are thicker than
teacup walls. Because thermal resistance, like electrical resistance, is pro-
portional to length, the house walls give the house a large thermal re-
sistance. However, the larger surface area of the house compared to the
teacup more than compensates for the wall thickness, giving the house a
smaller overall thermal resistance. Compared to the teacup, the house has
a much, much higher mass and much higher thermal capacitance. The
resulting time constant RtCt is much longer for the house than for the
teacup. One study of houses in Greece quotes 86hr or roughly 4days as
the thermal time constant. That time constant must be for a well insulated
house.
In Cape Town, South Africa, where the weather is mostly warm and
houses are often not heated even in the winter, the badly insulated house
in which I lived had a thermal time constant of around 0.5day. The
dimensionless parameter ωτ is then
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2π f︸︷︷︸
ω

τ = 2π × 1day−1︸ ︷︷ ︸
f

× 0.5day︸ ︷︷ ︸
τ

, (2.18)

or approximately 3. In the (South African) winter, the outside temper-
ature varied between 45 ◦F and 75 ◦F. This 30 ◦F outside variation gets
shrunk by a factor of 3, giving an inside variation of 10 ◦F. This variation
occurred around the average outside temperature of 60 ◦F, so the inside
temperature varied between 55 ◦F and 65 ◦F. Furthermore, if the coldest
outside temperature is at midnight, the coldest inside temperature is de-
layed by almost 6hr (the one-quarter-period delay). Indeed, the house
did feel coldest early in the morning, just as I was getting up – as pre-
dicted by this simple model of heat flow that is based on a circuit-analysis
abstraction.


