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8.3 Random walks

Random walks are everywhere. Do you remember the card game War?
How long does it last, on average? A molecule of neurotransmitter is
released from a vesicle. Eventually it binds to the synapse; then your leg
twitches. How long does the molecule take to arrive? On a winter day,
you stand outside wearing only a thin layer of clothing. Why do you feel
cold?

These physical situations are examples
of random walks – for example, a gas
molecule moving and colliding. The analy-
sis in this section is in three parts. First,
we figure out how random walks be-
have. Then we use that knowledge to
derive the diffusion equation, which is
a reusable idea (an abstraction). Finally,
we apply the diffusion equation to heat flows (keeping warm on a cold
day).

8.3.1 Behavior of regular walks

In a general random walk, the walker can move a variable distance and
in any direction. This general situation is complicated. Fortunately, the
essential features of the random walk do not depend on these compli-
cated details. Let’s simplify. The complexity arises from the generality
– namely, because the direction and the distance between collisions are
continuous. To simplify, lump the possible distances: Assume that the
particle can travel only a fixed distance between collisions. In addition,
lump the possible directions: Assume that the particle can travel only
along coordinate axes. Further specialize by analyzing the special case of
one-dimensional motion before going to the more general cases of two-
and three-dimensional motion.

In this lumped one-dimensional model, a particle starts at the origin and
moves along a line. At each tick it moves left or right with probability
1/2 in each direction. Here it is at x = 3:

−5 −4 −3 −2 −1 0 1 2 3 4 5 6
x
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Let the position after n steps be xn, and the expected position after n steps
be 〈xn〉. The expected is position is the average of all its possible positions,
weighted by their probabilities. Because the random walk is unbiased –
motion in each direction is equally likely – the expected position cannot
change (that’s a symmetry argument).

〈xn〉 = 〈xn−1〉 .

Therefore, 〈x〉, the first moment of the position, is an invariant. Alas, it
is not a fascinating invariant because it does not tell us anything that we
did not already understand.

Let’s try the next-most-complicated moment: the second moment 〈x2
〉.

Its analysis is easiest in special cases. Suppose that, after wandering a
while, the particle has arrived at 7, i.e. x = 7. At the next tick it will be
at either x = 6 or x = 8. Its expected squared position – not its squared
expected position! – has become

〈x2
〉 =

1
2
(
62 + 82

)
= 50.

The expected squared position increased by 1.

Let’s check this pattern with a second example. Suppose that the particle
is at x = 10, so 〈x2

〉 = 100. After one tick, the new expected squared
position is

〈x2
〉 =

1
2
(
92 + 112

)
= 101.

Yet again 〈x2
〉 has increased by 1! Based on those two examples, the

conclusion is that

〈x2
n+1〉 = 〈x2

n〉 + 1.

In other words,

〈x2
n〉 = n.

Because each step takes the same time (the particle moves at constant
speed),

〈x2
n〉 ∝ t.
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The result that 〈x2
〉 is proportional to time applies not only to the one-

dimensional random walk. Here’s an example in two dimensions. Sup-
pose that the particle’s position is (5, 2), so 〈x2

〉 = 29. After one step, it
has four equally likely positions:

(0,0)(0,0)

(5,2)

r

Rather than compute the new expected squared distance using all four
positions, be lazy and just look at the two horizontal motions. The two
possibilities are (6, 2) and (4, 2). The expected squared distance is

〈x2
〉 =

1
2

(40 + 20) = 30,

which is one more than the previous value of 〈x2
〉. Since nothing is special

about horizontal motion compared to vertical motion – symmetry! – the
same result holds for vertical motion. So, averaging over the four possible
locations produces an expected squared distance of 30.
For two dimensions, the pattern is:

〈x2
n+1〉 = 〈x2

n〉 + 1.

No step in the analysis depended on being in only two dimensions. In
fancy words, the derivation and the result are invariant to change of di-
mensionality. In plain English, this result also works in three dimensions.
In a standard walk in a straight line, 〈x〉 ∝ time. Note the single power
of x. The interesting quantity in a regular walk is not x itself, since it
can grow without limit and is not invariant, but the ratio x/t, which is
invariant to changes in t. This invariant is known as the speed.
In a random walk, where 〈x2

〉 ∝ t, the interesting quantity is 〈x2
〉/t. The

expected squared position is not invariant to changes in t. However,
the ratio 〈x2

〉/t is invariant. This invariant is, except for a dimensionless
constant, the diffusion constant and is often denoted D. It has dimensions
of L2T−1.
This qualitative difference between a random and a regular walk makes
intuitive sense. A random walker, for example a gas molecule or a very
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drunk person, moves back and forth, sometimes making progress in one
direction, and other times undoing that progress. So, in order to travel
the same distance, a random walker should require longer than a regu-
lar walker requires. The relation 〈x2

〉/t ∼ D confirms and sharpens this
intuition. The time for a random walker to travel a distance l is t ∼ l2/D,
which grows quadratically rather than linearly with distance.

8.3.2 Diffusion equation

The preceding conclusion about random walks is sufficient to derive the
diffusion equation, which describes how charge (electrons) move in a
wire, how heat conducts through solid objects, and how gas molecules
travel. Imagine then a gas of particles with each particle doing a random
walk in one dimension. What is the equation that describes how the
concentration, or number density, varies with time?

N(x− ∆x) N(x) N(x + ∆x)

Divide the one-dimensional world
into slices of width ∆x, where ∆x
is the mean free path. Then look
at the slices at x−∆x, x, and x +

∆x. In every time step, one-half
the molecules in each slice move
left, and one-half move right. So
the number of molecules in the
x slice changes from N(x) to

1
2

(N(x − ∆x) + N(x + ∆x)).

The change in N is

∆N =
1
2

(N(x − ∆x) + N(x + ∆x)) −N(x)

=
1
2

(N(x − ∆x) − 2N(x) + N(x + ∆x)).

This last relation can be rewritten as

∆N ∼ (N(x + ∆x) −N(x)) − (N(x) −N(x + ∆x)) .

In terms of derivatives, it is

∆N ∼ (∆x)2 ∂
2N
∂x2 .
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The slices are separated by a distance such that most of the molecules
travel from one piece to the neighboring piece in the time step τ. If τ is
the time between collisions – the mean free time – then the distance is
the mean free path λ. Thus

∆N
τ
∼
λ2

τ
∂2N
∂x2 ,

or

Ṅ ∼ D∂
2N
∂x2

where D ∼ λ2/τ is a diffusion constant.

This partial-differential equation has interesting properties. The second
spatial derivative means that a linear spatial concentration gradient re-
mains unchanged. Its second derivative is zero so its time derivative
must be zero. Diffusion fights curvature – roughly speaking, the second
derivative – and does not try to change the gradient directly.

8.3.3 Keeping warm

One consequence of the diffusion equation is an analysis of how to keep
warm on a cold day. To quantify keeping warm, or feeling cold, we need
to calculate the heat flux: the energy flowing per unit area per unit time.
Start with the definition of flux. Flux (of anything) is defined as

flux of stuff =
stuff

area × time
.

The flux depends on the density of stuff and on how fast the stuff travels:

flux of stuff =
stuff

volume
× speed.

For heat flux, the stuff is thermal energy. The specific heat cp is the
thermal energy per mass per temperature, cpT is the thermal energy per
mass, and ρcpT is therefore the thermal energy per volume. The speed
is the ‘speed’ of diffusion. To diffuse a distance l takes time t ∼ l2/D,
making the speed l/t or D/l. The l in the denominator indicates that, as
expected, diffusion is slow over long distances. For heat diffusion, the
diffusion constant is denoted κ and called the thermal diffusivity. So the
speed is l/κ.
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Combine the thermal energy per volume with the diffusion speed:

thermal flux = ρcpT × κ
l
.

∆x

T1

T2

The product ρcpκ occurs so frequently that it is given
a name: the thermal conductivity K. The ratio T/l is
a lumped version of the temperature gradient ∆T/∆x.
With those substitutions, the thermal flux is

F = K∆T
∆x
.

With one side held at T1 and the other at T2, the tem-
perature gradient is (T2 − T1)/∆x.

To estimate how much heat one loses on a cold day, we need to estimate
K = ρcpκ. To do so, put all the pieces together:

ρ ∼ 1kgm−3,

cp ∼ 103 J kg−1 K−1,

κ ∼ 1.5 ·10−5 m2 s−1,

where we are guessing that κ = ν (because both κ and ν are diffusion
constants). Then

K = ρcpκ ∼ 0.02Wm−1 K−1.

Using this value we can estimate the heat loss on a cold day. Let’s say
that your skin is at T2 = 30 ◦C and the air outside is T1 = 0 ◦C, making
∆T = 30K. A thin T-shirt may have thickness 2mm, so

F = K∆T
∆x
∼ 0.02Wm−1 K−1

×
30K

2 ·10−3 m
∼ 300Wm−2.

Damn, we want a power rather than a power per area. Ah, flux is power
per area, so just multiply by a person’s surface area: roughly 2m tall and
0.5m wide, with a front and a back. So the surface area is about 2m2.
Thus, the power lost is

P ∼ FA = 300Wm−2
× 2m2 = 600W.

No wonder a winter day wearing only thin pants and shirt feels so cold:
600W is large compared to human power levels. Sitting around, a person
produces 100W of heat (the basal metabolic rate). When 600W escapes,
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one is losing far more than the basal metabolic rate. Eventually, one’s
core body temperature falls. Then chemical reactions slow down. This
happens for two reasons. First, almost all reactions go slower at lower
temperature. Second, enzymes lose their optimized shape, so they be-
come less efficient. Eventually you die.

One solution is jogging to generate extra heat. That solution indicates
that the estimate of 600W is plausible. Cycling hard, which generates
hundreds of watts of heat, is vigorous enough exercise to keep one warm,
even on a winter day in thin clothing.

Another simple solution, as parents repeat to their children: Dress warmly
by putting on thick layers. Let’s recalculate the power loss if you put on
a fleece that is 2 cm thick. You could redo the whole calculation from
scratch, but it is simpler is to notice that the thickness has gone up by a
factor of 10 but nothing else changed. Because F ∝ 1/∆x, the flux and the
power drop by a factor of 10. So, wearing the fleece makes

P ∼ 60W.

That heat loss is smaller than the basal metabolic rate, which indicates
that one would not feel too cold. Indeed, when wearing a thick fleece,
only the exposed areas (hands and face) feel cold. Those regions are
exposed to the air, and are protected by only a thin layer of still air (the
boundary layer). Because a large ∆x means a small heat flux, the moral
is (speaking as a parent): Listen to your parents and bundle up!


