

Alex Sloboda and Fiona Paine

Why a USB Charger?

- Common need
- Multitude of power sources
- Challenging design problem

Overview

Input and Boost Stage

Goal: Provide stable higher end voltage inputs for buck stage.

Specifications:

○ Input voltages: 1.5-15 V

• Input currents: 100mA - 9A pulsed

Output voltages: 10-15 V

• Output currents: 100mA-2A

Boost Converter

General operation:

Inductor stores and releases energy between two states

MOSFET On/Inductor Charging

MOSFET Off/Inductor Discharging

Boost Stage Power Rails

Why necessary?

Specifications: Input 1.5-15 Volts Output 3 - 15 Volts

Boost Stage Control Circuitry

Pulse width module controls switching

Input controlled duty cycle

Burst PWM

Buck and Output Stage

Specifications:

Input Voltage: 10-15

Volts

Output (USB Standard):

Max Output Current: 1.5

Amps

Output Voltage: 5 Volts

Buck Converter

Continuous Mode
Duty Cycle = Vout/Vin

PWM Based Buck Stage Control

Varying duty cycle of PWM adjusts charge/discharge timing of Buck stage

PWM

Output Protection

Filtering ripple

Safety features: Current and voltage limiter

Time Line

By April 12th: Design schematic completed and order parts

April 14th: Project Presentation

By April 16th: Buck and boost modules tested and working

By April 22nd: Control circuitry tested and working

By April 24th: Input and output stages tested and working

April 27th: Project implementation status due

May 5/6: Final presentation and checkoff

Possible Extensions

Take input from wall adapter

Power specific device such as ECG

Questions?

