Automatic Bedtime Audio Volume Adjuster

Brandon Avila and Christopher Au
Massachusetts Institute of Technology
April 2016
Introduction

- Goal: Improve audio experience before sleep
- Audio compressor:
 - Decreases sudden loud sounds
 - Gradually decreases volume over time
- Relaxing imagery: responsive LEDs
High Level Block Diagram

Audio Out → Compressor → Timer → Amplifier

... → Delay → LED → Peak Follower → BPF → Speaker
... → Delay → Peak Follower → BPF
... → Delay → Peak Follower → BPF
Power

- 12V 4.16A DC power supply
- 120V AC wall outlet power
- Common power rail throughout project
Line Level

- Standard audio-out line level used for each module
- Low impedance load expected from speaker/headphone
- Intermediate steps require voltage amplification
Audio Compression

- Reduce volume spikes with voltage controlled amplifier (VCA)
- Possible strategies (VCA):
 1. Control resistor value with a voltage (MOSFET, JFET)
 2. Multiply signal voltage with gain voltage
Possible Voltage Controlled Amplifier Implementations

- Build new circuit
- Study past VCA with linear response

Source: [1] Electronotes by Bernie Hutchens
http://electronotes.netfirms.com/
Possible Voltage Multiplier Solution

- Multiply to input - a gain function that depends on input signal
 - Use comparators to see if voltage breaches certain loud voltage
 - Attenuate signal if loud voltage breached
Gain function ~ 0 to significantly decrease final output voltage

Gain function ~1 to keep volume closer to original
Gradual Volume Reduction
- Timing circuit using a 555 timer and RC
- Time decay constant 20-30 seconds
- Gradually decrease the signal over time
Frequency Visualization

- Band-pass filters supply a DC voltage to different colors for different frequencies

![Diagram of band-pass filters and delays]
Delay Line Element

- Sample and hold DC signal
Delay Line Element

- Sample and hold DC signal

- Takes smooth input
- Produces periodically stepping output
Delay Line Element

- Sample and hold DC signal
 - Takes smooth input
 - Produces periodically stepping output
 - Stores charge in a capacitor
Delay Line Element

- Sample and hold DC signal

- Takes smooth input
- Produces periodically stepping output
- Stores charge in a capacitor
Delay Line Element
- Sample and hold DC signal

- Takes smooth input
- Produces periodically stepping output
- Stores charge in a capacitor
- Allows current through periodically
Delay Line Element

- Sample and hold DC signal

- Takes smooth input
- Produces periodically stepping output
- Stores charge in a capacitor
- Allows current through periodically
Delay Line Element

- Sample and hold DC signal

- Takes smooth input
- Produces periodically stepping output
- Stores charge in a capacitor
- Allows current through periodically
Delay Line Element
Delay Line Element

Alternating clock signals
Timeline Weeks 1-2

- Week 1 (Apr 15)
 - DC Voltages produced by LED BPFs
 - Spikes in audio successfully compressed

- Week 2 (Apr 22)
 - Audio timer used to decrease signal over time
 - LEDs lit in response to audio
Timeline Weeks 3-4

- Week 3 (Apr 29)
 - Spike decrease / gradual volume decrease
 - Audio and visual components combined
 - Debugging
- Week 4 (May 3)
 - Full written documentation / presentation
Conclusion

- Project changes audio and visual stimuli before bedtime

- Potential Difficulties:
 - Decrease loud volume spikes to appropriate levels
 - Return to line level specifications reliably
Additional Goals

- Adjustable volume decay
- Switch to immediately turn off sound
- Different mode to not decrease volume until halfway time
- Sound equalizer to change bass levels
- Create a net or other geometry of LED lines
References

Source: [1] Electronotes by Bernie Hutchens
http://electronotes.netfirms.com/

Source:[3]