
Class 4: Speci�cations

6.102 — Software Construction
Spring 2024

1 / 27

Exercise: yellkey.com/stand

Nanoquiz: yellkey.com/guess

clicker.mit.edu/6.102

Choosing types
In warmup.ts :

Choose the types in place of TODO ,
so that the speci�cations make sense

Please leave empty seats on the ends of rows, not in the
middle, so everyone can easily �nd a seat.

Please take your phone off Wi-Fi, it helps people who have
old computers, even if you have a shiny new computer.

2 / 27

Nanoquiz
This quiz is just for you and your own brain:

closed-book, closed-notes
nothing else on your screen

Lower your laptop screen when you’re done

 yellkey.com/guess

3 / 27

Exercise: yellkey.com/stand

Nanoquiz: yellkey.com/guess

clicker.mit.edu/6.102

Choosing types
In warmup.ts :

Choose the types in place of TODO ,
so that the speci�cations make sense

Please leave empty seats on the ends of rows, not in the
middle, so everyone can easily �nd a seat.

Please take your phone off Wi-Fi, it helps people who have
old computers, even if you have a shiny new computer.

5 / 27

Step zero

6 / 27

TurtleSoup
/**
 * Draw a square.
 *
 * @param turtle the turtle context
 * @param sideLength length of each side, must be >= 0
 */
function drawSquare(turtle: Turtle, sideLength: number): void

7 / 27

TurtleSoup
/**
 *
 *
 * @param turtle the turtle context
 * @param sideLength length of each side, must be >= 0
 */
function drawSquare(turtle: Turtle, sideLength: number): void

A. Precondition
B. Postcondition
C. Neither
D. Both

Draw a square.

8 / 27

TurtleSoup
/**
 * Draw a square.
 *
 * @param turtle the turtle context
 * @param sideLength , must be >= 0
 */
function drawSquare(turtle: Turtle, sideLength: number): void

A. Precondition
B. Postcondition
C. Neither
D. Both

length of each side

9 / 27

TurtleSoup
/**
 * Draw a square.
 *
 * @param turtle the turtle context
 * @param sideLength length of each side,
 */
function drawSquare(turtle: Turtle, sideLength: number): void

A. Precondition
B. Postcondition
C. Neither
D. Both

must be >= 0

10 / 27

TurtleSoup
/**
 * Find a sequence of turns and moves that visits points in order.
 *
 * @param points array of N points, , ...
 * @returns an array [turn_0,move_0,...,turn_N+1]
 * such that if turtle starts at (0,0) heading up,
 * and does turn(turn_i) and forward(move_i) actions in order,
 * then it will be at points[i] after move_i for all valid i,
 * and finish heading up.
 */
function findPath(points: Array<Point>): Array<number>

A. Precondition
B. Postcondition
C. Neither
D. Both

adjacent points distinct

11 / 27

TurtleSoup
/**
 * Find a sequence of turns and moves that visits points in order.
 *
 * @param points array of N points, adjacent points distinct, ...
 * @returns an array [turn_0,move_0,...,turn_N+1]
 * such that ,
 * and does turn(turn_i) and forward(move_i) actions in order,
 * then it will be at points[i] after move_i for all valid i,
 * and finish heading up.
 */
function findPath(points: Array<Point>): Array<number>

A. Precondition
B. Postcondition
C. Neither
D. Both

if turtle starts at (0,0) heading up

12 / 27

TurtleSoup
/**
 * Find a sequence of turns and moves that visits points in order.
 *
 * @param points array of N points, adjacent points distinct, ...
 * @returns an array [turn_0,move_0,...,turn_N+1]
 * such that if turtle starts at (0,0) heading up,
 * and does turn(turn_i) and forward(move_i) actions in order,
 * then it will be at points[i] after move_i for all valid i,
 * and finish heading up.
 */
function findPath(points: Array<Point>):

A. Precondition
B. Postcondition
C. Neither
D. Both

Array<number>

13 / 27

Warmup

14 / 27

Exercise: yellkey.com/stand
Preconditions
In precond.ts :

Fill in each requires: ??? with an appropriate precondition
so that the spec is implementable (possible to satisfy the postcondition)

Don’t change the signature or postcondition.

15 / 27

Exercise: yellkey.com/stand
Preconditions
In precond.ts :

Fill in each requires: ??? with an appropriate precondition
so that the spec is implementable (possible to satisfy the postcondition)

Don’t change the signature or postcondition.

evaluateParabola — constrain a.length ? constrain x ?

winner — allow empty s ?

replace — testing hat asks if replace('a', {a:'b', b:'a'}) is allowed

16 / 27

Precondition for replace
When does it make sense to use a precondition?

What’s the alternative?

17 / 27

Postconditions
In postcond.ts :

Fill in each effects: ??? with an appropriate postcondition

Don’t change the signature or precondition.

18 / 27

Postconditions
In postcond.ts :

Fill in each effects: ??? with an appropriate postcondition

Don’t change the signature or precondition.

evaluateParabola — fail fast?

factor — does “p×q=n” by itself promise enough to the client?

deleteAllOccurrences — returns void ! what do we do?

split — how to write the postcondition concisely?

19 / 27

Postcondition for split
function split(s: string, sep: string): Array<string>
// requires: sep.length = 1
// effects: returns `list` such that ???

20 / 27

Postcondition for split
function split(s: string, sep: string): Array<string>
// requires: sep.length = 1
// effects: returns `list` such that ???

What would you put in place of ??? (can pick more than one, to concatenate them)

A. list is not empty
B. list has no empty strings
C. it �nds the �rst sep in s , makes that the �rst element of list , then repeats
D. list consists of substrings of s , none of which contain sep
E. s is the concatenation of list with one sep between each string in list

21 / 27

A trial spec — let’s check it
function split(s: string, sep: string): Array<string>
// requires: sep.length = 1
// effects: returns a k-element `list` such that
// text = list[0] + sep + list[1] + ... + sep + list[k-1]

22 / 27

A trial spec — let’s check it
function split(s: string, sep: string): Array<string>
// requires: sep.length = 1
// effects: returns a k-element `list` such that
// text = list[0] + sep + list[1] + ... + sep + list[k-1]

Which of these input/output pairs is allowed by the spec above? (can pick more than one)

A. split("ab,cd,ef", ",") → ["ab", "cd", "ef"]
B. split("ab,cd,ef", ",") → ["ab", "cd,ef"]
C. split("ab,cd,ef", ",") → ["a", "b", "c", "d", "e", "f"]
D. split("ab,cd,ef", ",") → ["ab", "", "cd", "", "ef"]
E. none of the above

23 / 27

Iterating!
function split(s: string, sep: string): Array<string>
// requires: sep.length = 1
// effects: returns a k-element `list` such that
// no elements of `list` contain `sep`, and
// text = list[0] + sep + list[1] + ... + sep + list[k-1]

24 / 27

Iterating!
function split(s: string, sep: string): Array<string>
// requires: sep.length = 1
// effects: returns a k-element `list` such that
// no elements of `list` contain `sep`, and
// text = list[0] + sep + list[1] + ... + sep + list[k-1]

Finally, let’s rewrite this as TypeDoc:

/**
 * Splits a string into parts separated by a separator character
 * @param s string to split
 * @param sep separator to split on; requires sep.length = 1
 * @returns a k-element `list` such that
 * no elements of `list` contain `sep`, and
 * text = list[0] + sep + list[1] + ... + sep + list[k-1]
 */
function split(s: string, sep: string): Array<string>

25 / 27

