Class 7: Abstraction Functions & Rep Invariants

6.102 — Software Construction
Spring 2024

1/28

How abstract data types came about

Exercise:

m central

Nanoquiz:

E pick

2/28

https://www.youtube.com/watch?v=vz03dB6iMSo

How abstract data types came about

Exercise:

< central

Nanoquiz:

E pick

3/28

Nanoquiz

¢ This quiz is just for you and your own brain:
o closed-book, closed-notes
o nothing else on your screen

e | ower your laptop screen when you’re done

E yellkey.com/pick

4/28

Finishing the Sudoku ADT

In sudoku.ts, first work on the rep invariant:

1. Rep invariant: do the TODO

2. checkRep() : do the TODO

3. Call checkRep() everywhere you need to
4. Get the tests passing

Exercise: < central

7/28

o . Exercise: < central
Finishing the Sudoku ADT
In sudoku.ts, first work on the rep invariant:

1. Rep invariant: do the TODO

2. checkRep() : do the TODO

3. Call checkRep() everywhere you need to
4. Get the tests passing

If you finish that:

5. Write the abstraction function
6. Write the rep exposure safety argument

8/28

Rl: probably complete or incomplete?

9/28

Rl: probably complete or incomplete?

export class PlayerStats {
private totalPointsScored: number;
private pointsScoredInOvertime: number;
// AF:

// RI:
// pointsScoredInOvertime <= totalPointsScored

10/28

Rl: probably complete or incomplete?

export class PlayerStats {
private totalPointsScored: number;
private pointsScoredInOvertime: number;
// AF:

// RI:

// pointsScoredInOvertime <= totalPointsScored
b
Probably INCOMPLETE

// RI:
// totalPointsScored and pointsScoredInOvertime are nonnegative integers

... but what AF could we use instead?

11/28

Rl: probably complete or incomplete?

export class Team {
private people: Array<string>;
// AF: ...

// RI:

// people.size() >= 2
// all strings in people are nonempty

12/28

Rl: probably complete or incomplete?

export class Facebook {
private users: Set<User>;
private friends: Map<User, Set<User>>;
// AF:

// RI:
// ul in friends.get(u2) iff u2 in friends.get(ul)

13/28

Finishing the Sudoku ADT

In sudoku.ts:

1. Rep invariant: do the TODO

2. checkRep() : do the TODO

3. Call checkRep() everywhere you need to
4. Get the tests passing

5. Write the abstraction function
6. Write the rep exposure safety argument

Exercise: < central

14 /28

AF: good or bad?

15/28

AF: good or bad?

export class Player {
private name: string;
private birthday: Date;

// RI:
// AF: the player's name is stored in name,
// and the player's birthday is stored in birthday

16 /28

AF: good or bad?

export class Complex {
private parts: numberl[];
// RI:

// AF(parts) = the complex number parts[1l] + ixparts[0]
¥

17 /28

AF: good or bad?

export class LineSegment {
private start, end: Point;
private length: number;
// RI:

// AF(start,end, length) = the line segment between “start® and “end’
}

18/28

AF: good or bad?

export class Time {
private s: number;
// RI:

// AF(s) is a time of day
b

19/28

Rep: safe or exposed?

20/28

Rep: safe or exposed?

export class Team {
private people: Array<string>;

public pickSomebody(): string {
return this.peoplel0];
s

21/28

Rep: safe or exposed?

export class Team {
private people: Array<string>;

public pickSomebody(): string {
return this.peoplel0];
Iy

22 /28

Rep: safe or exposed?

export class Team {
private readonly people: ReadonlyArray<string>;

public constructor(people: ReadonlyArray<string>) {
this.people = people;

public getMembers(): ReadonlyArray<string> {
return this.people;

¥

23/28

Rep: safe or exposed?

export class Team {
private readonly people: ReadonlyArray<string>;

public constructor(people: ReadonlyArray<string>) {
this.people = people;

public getMembers(): ReadonlyArray<string> {
return this.people;

¥

24 /28

Rep: safe or exposed?

export class Team {
private readonly people: ReadonlyArray<string>;

public constructor(people: ReadonlyArray<string>) {
this.people = people;

public getMembers(): ReadonlyArray<string> {
return this.people;

¥

25/28

Rep: safe or exposed?

export class HallOfFame {
private readonly records: Map<Sudoku, number> = new Map();

/*x @param time >= 0@ */
public addRecord(puzzle: Sudoku, time: number): void {
const record = this.records.get(puzzle);
if (record === undefined || time < record) {
this.records.set(puzzle, time);
¥

/*x% @param puzzle must have been added x/
public getRecord(puzzle: Sudoku): number {
return this.records.get(puzzle) ?? assert.fail();

26/28

Rep: safe or exposed?

export class HallOfFame {
private readonly records: Map<Sudoku, number> = new Map();

/*x @param time >= 0@ */
public addRecord(puzzle: Sudoku, time: number): void {
const record = this.records.get(puzzle);
if (record === undefined || time < record) {
this.records.set(puzzle, time);
¥

/*x% @param puzzle must have been added x/
public getRecord(puzzle: Sudoku): number {
return this.records.get(puzzle) ?? assert.fail();

27 /28

Rep: safe or exposed?

export class HallOfFame {
private readonly records: Map<Sudoku, number> = new Map();

/*x @param time >= 0@ */
public addRecord(puzzle: Sudoku, time: number): void {
const record = this.records.get(puzzle);
if (record === undefined || time < record) {
this.records.set(puzzle, time);
¥

/*x% @param puzzle must have been added x/
public getRecord(puzzle: Sudoku): number {
return this.records.get(puzzle) ?? assert.fail();

28 /28

