
Class 9: Functional Programming

6.102 — Software Construction
Spring 2024

1 / 14



Exercise:  yellkey.com/type

Nanoquiz:  yellkey.com/east
Warmup
Open catalog.ts …

Run its tests with npm test
Do TODO #1: replace loops & ifs with map/�lter/reduce
Tests should still pass

2 / 14



Nanoquiz
This quiz is just for you and your own brain:

closed-book, closed-notes
nothing else on your screen

Lower your laptop screen when you’re done

 yellkey.com/east

3 / 14



Exercise:  yellkey.com/type
Map, Filter, Reduce
Do the TODOs in catalog.ts  to convert loops & ifs with map/�lter/reduce

Step-by-step refactoring: run npm test  after doing each TODO

TODO #1: �lter a list of integers

5 / 14



Exercise:  yellkey.com/type
Map, Filter, Reduce
Do the TODOs in catalog.ts  to convert loops & ifs with map/�lter/reduce

Step-by-step refactoring: run npm test  after doing each TODO

TODO #1: �lter a list of integers

TODO #2: map()  and concat()  to make a list of strings

6 / 14



Exercise:  yellkey.com/type
Map, Filter, Reduce
Do the TODOs in catalog.ts  to convert loops & ifs with map/�lter/reduce

Step-by-step refactoring: run npm test  after doing each TODO

TODO #1: �lter a list of integers

TODO #2: map()  and concat()  to make a list of strings

TODO #3: use reduce()  to count a list

7 / 14



Exercise:  yellkey.com/type
Map, Filter, Reduce
Do the TODOs in catalog.ts  to convert loops & ifs with map/�lter/reduce

Step-by-step refactoring: run npm test  after doing each TODO

TODO #1: �lter a list of integers

TODO #2: map()  and concat()  to make a list of strings

TODO #3: use reduce()  to count a list

TODO #4: use reduce()  to join a list

8 / 14



Exercise:  yellkey.com/type
Map, Filter, Reduce
Do the TODOs in catalog.ts  to convert loops & ifs with map/�lter/reduce

Step-by-step refactoring: run npm test  after doing each TODO

TODO #1: �lter a list of integers

TODO #2: map()  and concat()  to make a list of strings

TODO #3: use reduce()  to count a list

TODO #4: use reduce()  to join a list

TODO #5: use flatMap()  to �atten nested lists

9 / 14



Iterables and generators
Sometimes you’re not working with arrays.

TODO #6

remove the skip  from the range test
implement range2()  as a generator function

don’t use any arrays in the body of range2()

10 / 14



Iterables and generators
Sometimes you’re not working with arrays.

TODO #6

remove the skip  from the range test
implement range2()  as a generator function

don’t use any arrays in the body of range2()

TODO #7

remove the skip  from the map/�lter test
implement map()  and filter()  as generator functions

again, don’t use arrays

11 / 14



Iterables and generators
Sometimes you’re not working with arrays.

TODO #6

remove the skip  from the range test
implement range2()  as a generator function

don’t use any arrays in the body of range2()

TODO #7

remove the skip  from the map/�lter test
implement map()  and filter()  as generator functions

again, don’t use arrays

Finally, update numberedMajors()  to use Iterable :
use range2() , the new filter() , and return Iterable  instead of Array

12 / 14



Reduce is all you need
Let’s use reduce  to implement map

Suppose arr: Array<T>  and f: T -> U

Which of the following is equivalent to arr.map(f) ? (pick all good choices)

(A)    arr.reduce( f, [])

(B)    arr.reduce( (a: Array<U>, t: T) => a.concat([f(t)]), [])

(C)    arr.reduce( (a: Array<U>, t: T) => [f(t)].concat(a), [])

(D)    arr.reduce( (a: Array<U>, t: T) => { a.push(f(t)); return a;}, [])

13 / 14



Reduce is all you need
Now let’s use reduce  to implement filter

Suppose arr: Array<T>  and f: T -> boolean

Which of the following is equivalent to arr.filter(f) ? (pick all good choices)

(A)    arr.reduce( (a: Array<T>, t: T) => f(t) ? a.concat([t]) : a, [])

(B)    arr.reduce( (a: Array<boolean>, t: T) => a.concat([f(t)]), [])

(C)    arr.reduce( (a: Array<T>, t: T) => { 
              if (f(t)) {
                  a.push(t); 
              } 
       }, [])

(D)    arr.reduce( (a: Array<T>, t: T) => f(t) ? t : undefined, [])

14 / 14


